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Abstract
Background: DSD encompass a wide range of pathologies 
that impact gonad formation, development, and function in 
both 46,XX and 46,XY individuals. The majority of these con-
ditions are considered to be monogenic, although the ex-
pression of the phenotype may be influenced by genetic 
modifiers. Although considered monogenic, establishing 
the genetic etiology in DSD has been difficult compared to 
other congenital disorders for a number of reasons including 
the absence of family cases for classical genetic association 
studies and the lack of evolutionary conservation of key ge-
netic factors involved in gonad formation. In recent years, 
the widespread use of genomic sequencing technologies 
has resulted in multiple genes being identified and pro-
posed as novel monogenic causes of 46,XX and/or 46,XY 
DSD. Summary: In this review, we will focus on the main ge-
nomic findings of recent years, which consists of new candi-
date genes or loci for DSD as well as new reproductive phe-
notypes associated with genes that are well established to 
cause DSD. For each gene or loci, we summarize the data 
that are currently available in favor of or against a role for 
these genes in DSD or the contribution of genomic variants 
within well-established genes to a new reproductive pheno-
type. Key Messages: Based on this analysis, we propose a 

series of recommendations that should aid the interpreta-
tion of genomic data and ultimately help to improve the ac-
curacy and yield genetic diagnosis of DSD.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Disorders/differences in sex development (DSD) are 
defined as congenital conditions with discordant devel-
opment of chromosomal and gonadal/anatomical sex 
and cover a wide range of phenotypes that involve the 
endocrine and reproductive systems [1–3]. These pathol-
ogies are particularly challenging in terms of the clinical 
diagnosis, genetic etiology, patient management, and 
predicting long-term outcomes. The diagnosis of DSD is 
made either during fetal life, at birth, in the first months 
of life, or at puberty as these phenotypes can evolve 
throughout the lifetime of an individual [1–4]. Although 
a genetic cause is suspected in most cases of DSD, accu-
rately identifying the causal variant has been historically 
challenging [5, 6]. The most problematic phenotypes are 
those associated with either very early gonad formation 
or development of the external genitalia with apparently 
normal gonad formation [5, 6]. The former are often due 
to errors in sex determination (e.g., 46,XY gonadal dys-
genesis [GD] or 46,XX ovotesticular DSD), a genetic pro-
gram that unlike other developmental process is not well 
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conserved in evolution even amongst mammals. For this 
reason, testing candidate genes from other model organ-
isms is often not informative. Indeed, several genes, which 
when mutated in the human cause gonadal anomalies, do 
not cause a DSD phenotype in the mouse [5, 7, 8]. At the 
other end of the phenotypic spectrum are the mild phe-
notypes of hypospadias and/or cryptorchidism, where 
population studies indicate that a mixture of genetics and 
environment may be responsible for the majority of cases 
[9–11].

Changes in sequencing technologies during the last 
decade have resulted in a rapid increase in the number of 
new genes proposed as candidates for monogenic forms 
of DSD [5, 6]. Unbiased sequencing approaches such as 
exome sequencing, where all the coding genes in the ge-
nome are sequenced, have thrown up many surprises, in-
cluding genes that would otherwise not have been consid-
ered to be involved in DSD, such as the RNA helicase 
DHX37 [12, 13]. The other theme to emerge from large-
scale exome sequencing studies is the broadening of the 
range of phenotypes associated with what were consid-
ered to be well-characterized DSD genes such as WT1 and 
NR5A1 [14–16]. Advances in our understanding of the 
genetic etiology of DSD will continue as whole-genome 
sequencing rather than whole-exome sequencing be-
comes more widely available. This will inevitably lead to 
an emphasis on the contribution of regulatory variants to 
DSD, which will present a new set of challenges to estab-
lish causality. In this review, we will focus on genes that 
have recently been proposed to cause monogenic forms 
of DSD. We will assess the evidence in favor of, or against, 
the causality of these genes and provide a summary of the 
available data. A summary of these genes is listed in Ta-
bles 1–3. For many of these genes, the phenotypic vari-
ability is considerable. This often includes individuals 
carrying the same amino acid change in a DSD gene [5, 
17, 18]. In this review, an important consideration is what 
we mean by the term monogenic. A monogenic pheno-
type is a phenotype produced by the effect of a single pair 
of genes or alleles. The genes/variants that are described 
here are considered to be monogenic causes of DSD (i.e., 
variants involving such genes have triggered DSD, and 
DSD would not have occurred in the absence of these 
variants). However, the phenotypic variability may well 
be due to other genomic variants or environmental influ-
ences on the regulatory pathways required for gonad for-
mation and/or function. There are efforts underway to 
define the range of genetic variants that influence the 
DSD phenotype for a given individual, but caution is 
needed in the interpretation of these data. In the absence 

of any large-scale, unbiased, whole-genome-wide asso-
ciation studies, these proposed genetic modifiers remain 
unproven with no functional or statistical evidence to 
support a role in pathogenicity [19–21].

46,XY DSD

The majority of new genes that have recently been 
identified to cause DSD are mainly associated with either 
syndromic or nonsyndromic forms of 46,XY GD [5, 6], 
the main reason being that GD is a  well-defined DSD 
phenotype that permits a detailed cohort analysis. This 
subgroup of XY DSD is also considered to be monogenic 
with little or no known environmental influences on the 
development of the phenotype. This contrasts with mild-
er 46,XY DSD phenotypes, which are considered multi-
genic with an environmental contribution and where the 
genetic components have proven difficult to identify [9–
11]. Here, we will provide a background and update of the 
genes and variants involved that complements the infor-
mation in Tables 1–3. Overviews on the genetic aspects of 
other well-established DSD genes that are a common 
cause of 46,XY DSD have been published recently includ-
ing the AR, AMH signaling, and disorders of androgen 
synthesis [22–25].

CBX2
The human Chromobox homolog 2 (CBX2) gene en-

codes a component of the polycomb (PcG) multiprotein 
complex. PcG proteins together with the counteracting 
trithorax (trxG) proteins control transcription through-
out development via chromatin remodeling and/or his-
tone modification. Disruption of Cbx2 in mice results in 
male-to-female gonadal sex reversal [26]. These mice 
show a delay in appearance of genital ridges and forma-
tion of hypoplastic gonads in both the sexes. XY sex re-
versal caused by loss of Cbx2 can be rescued by simulta-
neously deleting Wnt4 [27]. Available data indicate that 
during testis development, Cbx2 stabilizes the testis fate 
by blocking the upregulation of genes in the ovarian path-
way [27]. In the human, only a single case with 46,XY 
DSD has been reported to carry pathogenic variants in 
CBX2 [28]. The patient was a phenotypic female with 
complete lack of testis determination. She had bilateral 
ovaries and carried the biallelic variants, p.P98L (pater-
nally inherited) and p.R443P (maternally inherited). Both 
of these CBX2 variants are absent in the general popula-
tion (https://gnomad.broadinstitute.org/), and function-
al analysis indicated that they affect the biological activity 
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of the protein (Table  1). Pathogenic variants in CBX2 
causing XY DSD are very rare as other studies have failed 
to identify any causal variants in the gene [29–34].

An isoform of CBX2, termed CBX2.2, is a truncated 
form of the reference sequence CBX2.1. CBX2.2 has 211 
amino acids, including only the chromodomain, com-
pared with the reference CBX2.1 isoform which has 532 
amino acids. CBX2.2 has been suggested to cause 46,XY 
DSD [35]. To support this, the authors identified two vari-
ants, a missense (p.Cys132Arg) variant and a complete 
loss-of-function (LOF) variant (p.Cys154fs). However, 
population genetics data indicate that the latter variant is 
carried by 1/125 African Americans (https://gnomad.
b r o a d i n s t i t u t e . o r g / v a r i a n t / 1 7 - 7 7 7 5 5 7 7 1 - C T -
C?dataset=gnomad_r2_1), including several XY males 
who are homozygous for the variant. This variant is car-
ried by 12% of North African individuals (unpublished 
data). Consequently, this variant cannot be pathologic. A 
further analysis of population genetics datasets indicates 
that the CBX2.2 isoform has currently 23 LOF variants 
( h t t p s : / / g n o m a d . b r o a d i n s t i t u t e . o r g / g e n e /
ENSG00000173894?dataset=gnomad_r2_1). Several of 
these LOF variants are present in the general populations 
at frequencies that are both inconsistent with CBX2.2 hav-
ing a biological function and also exclude CBX2.2 as a 
cause of 46,XY DSD. The CBX2.2 isoform should there-
fore not be considered as a cause of 46,XY DSD (Table 2).

DHH
The Hedgehog (Hh) signaling pathway is important 

for gonadal development in mice and humans [36]. Hh 
proteins, including Desert Hedgehog (DHH), are ex-
pressed as unprocessed preproproteins that undergo pro-
cessing and autocatalytic cleavage. Following cleavage, 
the N-terminal fragment of 19 kDa (HhN) retains all Hh 
signaling activity. DHH, a product of Sertoli cells in the 
fetal testis, regulates the specification and formation of 
androgen producing fetal Leydig cells [36]. Biallelic vari-
ants of DHH have been described in patients with 46,XY 
GD with or without polyneuropathy. These patients are 
rare with less than 20 cases reported in the literature [37]. 
Why some patients present with both GD and polyneu-
ropathy and others only with GD is unclear. However, 
functional studies suggest that variants which disrupt the 
N-terminal fragment HhN are associated with GD and 
polyneuropathy, whereas those variants that effect the au-
toprocessing activity of DHH are associated only with GD 
[37].

One of the challenges created by large-scale exome se-
quencing studies of DSD cohorts is the interpretation of 

heterozygous variants of genes known to cause DSD in an 
autosomal recessive manner [30]. Heterozygous variants 
in DHH have been reported in 46,XY DSD and interpret-
ed as variants of unknown or uncertain significance 
(VUS). Recently, functional analysis of these variants 
confirms that they are unlikely to be involved in the DSD 
phenotype and should therefore be considered likely be-
nign [38].

DHX37
Two subgroups of DSD are the comparatively rare 

condition of 46,XY testicular regression syndrome (TRS) 
and anorchia. TRS is defined by a 46,XY chromosome 
complement, ambiguous or atypical genitalia, anomalies 
of sexual duct formation, and absence of gonadal tissue 
on one or both sides [39–41]. Some boys with TRS are 
born with normal external genitalia but present with 
cryptorchidism. Boys with TRS are considered to have 
variable degrees of testicular determination with the loss 
of gonad tissue early in gestation, and the families of some 
patients with TRS also include other children with com-
plete or partial 46,XY GD or agonadism [42, 43]. Thus, 
both 46,XY GD and TRS are regarded as a continuum of 
phenotypes due to errors in testis determination and 
maintenance of gonadal tissue rather than distinct and 
unrelated DSD categories. The closely related phenotype 
of anorchia is defined by the absence of testicular tissue 
in a 46,XY phenotypic male that may be unilateral or bi-
lateral. However, since male-typical differentiation of the 
genital tract and the development of the external genitalia 
is dependent on the production of anti-Müllerian hor-
mone (AMH) and androgens, the testis must have been 
present at least up to the 16th week of gestation in men 
with anorchia.

An advantage of using unbiased genetic screens, such 
as exome or genome sequencing, is that they often reveal 
unexpected genetic associations with the phenotype. The 
discovery by us and others of frequent pathogenic vari-
ants in the RNA helicase DHX37 in association with 
46,XY GD or 46,XY TRS is an excellent example [12, 13]. 
RNA helicases, including DHX37, play prominent roles 
in ribosome biogenesis in eukaryotic cells by the recruit-
ment or dissociation of ribosomal proteins or other bind-
ing factors [44–47]. The ribosome performs the essential 
function of translating mRNA into proteins [48]. Eukary-
otic ribosome assembly is characterized by the sequential 
modular assembly of pre-ribosomal complexes. The hu-
man ribosome consists of ribonucleoprotein complexes 
with a small 40S subunit (SSU) containing the 18S rRNA 
chain and 33 proteins (RPS) and a large 60S subunit 
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(LSU) which has the 28S, 5S, and 5.8S rRNA chains and 
47 proteins (RPL). Ribosome biogenesis is an intricate, 
complex, and coordinated process that takes place ini-
tially in the nucleolus and later in the cytoplasm [48].

DHX37 is a member of the DEAH family of RNA he-
licases, which share a similar protein core structure that 
consists of two flexibly linked RecA domains, within 
which are conserved sequence elements and conserved 
structural motifs. The two RecA-like domains of DHX37 
use the conserved residues and motifs to both bind ATP 
(motifs I, II, III, Va, and VI) and target RNA sequences 
(motifs Ia, Ib, Ic, IV, IVa, and V [49, 50]; Fig. 1). This fam-
ily of RNA helicases does not possess intrinsic substrate 
specificity and function by interacting with a large num-
ber of cofactors [50]. Although much of our knowledge 
on ribosome biogenesis and the role of DHX37 comes 
from studies in yeast, the function of DHX37 in ribosome 
biogenesis appears conserved in the human since the lack 
of the helicase in HeLa cells results in a reduction of the 
ribosome 40S subunit [51]. The importance of DHX37 in 
this process is highlighted by the observation that in these 

cells, the absence of DHX37 triggers a surveillance path-
way that leads to degradation of pre-ribosomal particles 
[51].

Variants in DHX37 have been reported to cause 46,XY 
GD, TRS, or anorchia [12, 13, 32, 52]. A total of 36 indi-
viduals have been reported with 46,XY DSD associated 
with novel or very rare missense variants in DHX37 (Ta-
ble 4; Fig. 1). Most variants are located within or imme-
diately adjacent to highly conserved motifs within the 
RecA1 and RecA2 domains (Fig. 1). Pathogenic variants 
in DHX37 are an important cause of 46,XY DSD, since 
10–15% of all cases of nonsyndromic 46,XY complete GD 
carry pathogenic DHX37 variants [12, 13, 32, 52]. This 
frequency is similar to the prevalence of pathogenic vari-
ants in the SRY, MAP3K1, or NR5A1 genes. DHX37 vari-
ants also account for approximately 20% of all cases of 
TRS [12, 13, 32, 52]. A striking feature of the variants 
causing DSD is that the affected amino acid residues fall 
within highly conserved functional motifs, and the resi-
dues themselves are conserved through to yeast. Indeed, 
almost half of all cases are due to a single amino acid vari-

Fig. 1. Schematic representation of the RecA1 and RecA2 domains in DHX37, indicating the position and evo-
lutionary conservation of residues that are associated with either 46,XY DSD, the NEDBAVC syndrome of ID 
and MCA, or the zebrafish tactile-evoked escape response mutant. The function of the motifs within each RecA 
domain is color-coded. ID, intellectual deficiency; MCA, multiple congenital anomalies.
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ant, p.R308Q, and there is no obvious genotype-pheno-
type correlation (Table 4). The gonadal phenotypes of in-
dividuals carrying the p.R308Q variant range from 46,XY 
complete or partial GD raised as female (6 individuals), 
46,XY DSD with atypical external genitalia raised as fe-
male (2 individuals), and 46,XY TRS with severe micro-
penis (with or without cryptorchidism and hypospadias) 
raised as male (9 individuals). Where the transmission of 
the variant p.R308Q can be established, 5 are de novo, 2 
are maternally inherited, and 1 is paternally inherited. 
This is consistent with a sex-limited autosomal dominant 
mode of inheritance.

However, variants in DHX37 are also associated with 
other congenital anomalies with no apparent DSD [53, 
54]. Compound heterozygous as well as de novo hetero-
zygous missense variants in DHX37 cause a complex con-
genital developmental syndrome consisting of micro-
cephaly, global developmental delay, seizures, facial dys-
morphia, and kidney and cardiac anomalies as well as 
cortical atrophy. This syndrome, which has been termed 
NEDBAVC (neurodevelopmental disorder with brain 
anomalies and with or without vertebral or cardiac anom-
alies; OMIM 618731), has been described in 6 patients in 
association with homozygous missense variants (p.

R487H and p.N419K), compound heterozygous missense 
variants (p.V731M/p.L467V and p.R93Q/p.E167A), or 
de novo missense variants (p.T1094M and p.D382G) [53, 
54]. Three of the affected children were 46,XY boys and 
three 46,XX girls. DSD was not reported  in any of these 
6 cases. Therefore, pathogenic missense variants in 
DHX37, even within the same RecA functional domain, 
may generate two distinct, nonoverlapping phenotypes. 
The DSD phenotype is limited to the formation and 
maintenance of Sertoli cells with no other reported devel-
opmental anomalies, whereas NEDBAVC is a complex 
syndromic form of developmental delay and/or intellec-
tual disability with somatic anomalies but with apparent 
normal gonadal development. To date, missense variants 
shared by both 46,XY DSD and NEDBAVC have not been 
reported.

Errors in the process of ribosome production, includ-
ing defects in ribosomal proteins, rRNA processing, or 
ribosome assembly factors, lead to the development of a 
highly specific group of pathologies affecting selective or-
gans or cell types that are collectively termed ribosomop-
athies [55, 56]. The most studied ribosomopathies in-
clude Diamond-Blackfan anemia, Shwachman-Diamond 
syndrome, and Treacher Collins syndrome. Diamond-
Blackfan anemia is an autosomal dominant disorder 
which usually presents in early childhood as bone mar-
row failure [55, 57]. Patients may also display a series of 
distinct congenital birth defects including skeletal abnor-
malities and cardiac and genitourinary malformations, 
together with an increased cancer susceptibility. DSD 
that is caused by pathogenic variants in the DHX37 gene 
constitute a new form of human ribosomopathy. Al-
though the genetic causes of ribosomopathies have been 
known for over two decades, the mechanisms involved 
are poorly understood. Pathogenic variants are predicted 
to cause reduced ribosome assembly, and these patholo-
gies reflect tissue/organ-specific needs for optimum pro-
tein production during development. This would impact 
on highly proliferative tissues such as hematopoiesis or 
skeletal development that require high protein synthesis. 
However, this does not adequately explain specific differ-
ences in the phenotypic presentation of these diseases. 
One possibility is that differing phenotypes reflect ribo-
some heterogeneity and functional specialization or that 
some of these factors could have acquired additional bio-
logical roles other than ribosome biogenesis.

Evidence in support of specific biological functions for 
DHX37, independent of its role in ribosome biogenesis, 
is indicated by both zebrafish studies and human ge-
nome-wide screens to identify factors that modulate hu-

Table 4. Summary of DSD phenotypes associated with published 
DHX37 pathogenic variants

DHX37 variant 
(patients, n)

XY DSD phenotypes

p.T304 (3) Female, GD + WD

p.R308 (15) Female, GD; female, CGD + WD; female, PGD; 
female 46,XY DSD, virilized external genitalia; 
male, TRS, micropenis, hypospadias + bilateral 
cryptorchidism; male, TRS, micropenis, bilateral 
cryptorchidism

p.R334 (2) Female, GD + WD; male, TRS, micropenis, 
bilateral cryptorchidism

p.R390 (1) Female, GD

p.T477 (2) Female, GD; male, TRS micropenis, bilateral 
cryptorchidism*; male, unilateral anorchia

p.S595 (2) Sibs – female, GD + WD; male TRS, micropenis

p.S626 (1) Male, TRS, micropenis, bilateral cryptorchidism

p.R674 (9) Female CDG; female gonadal dysgenesis + WD; 
male PGD + left testis; male TRS, micropenis

p.G1030 (1) Male, TRS, micropenis

WD, Wolffian ducts.
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man T-cell function. Zebrafish, carrying a homozygous 
missense variant p.K489P in Dhx37 (Fig. 1) [58], exhibit 
changes in a tactile-evoked escape response. Wild-type 
fish turn and then swim away, whereas Dhx37 mutant 
fish show an atypical dorsal bend, followed by swimming. 
This behavior strongly resembles zebrafish embryos 
treated with strychnine, which blocks glycine receptors. 
The glycine receptor is a pentameric receptor composed 
of alpha and beta subunits that mediate postsynaptic in-
hibition in the spinal cord and other regions of the central 
nervous system. The abnormal motor response in mu-
tants may be caused by a deficit in glycinergic synaptic 
transmission [58]. This was confirmed by both decreased 
expression levels of GlyR alpha and beta subunits in mu-
tants. RNA immunoprecipitation assays demonstrated 
that zebrafish Dhx37 physically interacts with GlyR alpha 
subunit transcripts. Remarkably, the mutant fish exhib-
ited no changes in ribosome biogenesis suggesting a spe-
cific neuronal function. In the human, CD8 T cells play 
essential roles in antitumor immune responses. Recently, 
genome-wide CRISPR screens using CD8 T cells in a can-
cer immunotherapy setting have identified DHX37 as an 
important regulator of antitumor effects [59]. Tumor-in-
filtrating lymphocytes lacking DHX37 have upregulated 
expression of specific genes in multiple immune response 
pathways [59]. This evidence suggests a link between ri-
bosome biogenesis and tissue-specific gene expression 
profiles. How variants in DHX37 cause 46,XY DSD is un-
clear. This group of DSD patients is unique insofar that 
their underlying cause has no obvious link to known ge-
netic pathways involved in human early testis formation 
(e.g., SRY/SOX9/NR5A1). This subgroup of 46,XY DSD 
may require a careful long-term clinical follow-up since 
patients with other forms of ribosomopathies have a 2.5- 
to 8.5-fold higher risk to develop cancer throughout their 
life, and for certain cancer types, these risks can be up to 
200-fold higher [60].

DMRT1
DMRT1 and its orthologs play essentials roles in sex 

determination and differentiation in many animals [61]. 
In mice, Dmrt1 is not required for testis determination; 
however, its continuous expression in the adult testis is 
required to maintain organ identity because forced at-
tenuation of Dmrt1 expression in adult testis results in 
transdifferentiation of the testis to an ovary [62]. In the 
human, deletions of terminal chromosome 9p which in-
cludes several genes as well as DMRT1 are associated with 
monosomy 9p syndrome. This is characterized by intel-
lectual disability together with a distinctive series of so-

matic anomalies, and in approximately 70% of 46,XY in-
dividuals, anomalies of testis development are seen that 
range from a completely female phenotype to a male phe-
notype with hypospadias and/or cryptorchidism [63]. 
Pathogenic variants within the DMRT1 coding sequences 
are remarkably rare. Evidence to indicate that DMRT1 is 
a key player in human testis determination came through 
the identification of a de novo missense variant (p.R111G) 
in the functionally important DM-DNA-binding domain 
in a patient with 46,XY complete GD [65]. There were no 
other somatic anomalies in this healthy girl. In vitro stud-
ies indicated that lack of testis determination seen in this 
patient is due to a combination of haploinsufficiency and 
dominant negative activity. The only other DMRT1 vari-
ant that has been reported to cause 46,XY CGD is a nov-
el de novo p.R80S variant, which is also located with the 
DM-DNA-binding domain. This variant is predicted to 
disrupt the interaction between DMRT1 and the minor 
groove of the DNA. Pathogenic variants of DMRT1 have 
not been reported in other large-scale exome sequencing 
studies of DSD cohorts (e.g., [30, 34]). One reason why 
pathogenic variants are rare is that to cause XY DSD, they 
must be located within a well-characterized functional 
domain and show dominant negative activity. A similar 
hypothesis has been suggested for the rarity of SOX8 cod-
ing variants associated with XY DSD (see below).

GATA4 and Partner ZFPM2 (FOG2)
GATA4 is a zinc finger (ZF) transcription factor, char-

acterized by presence of two conserved type IV ZF do-
mains (amino acids 217–241 and 271–295) that interact 
with NR5A1 to regulate gene expression during testis de-
termination and differentiation [65]. The key role of 
Gata4 in testis development has been known for some 
time. XY mice lacking Gata4 show partially descended 
small testis with irregular cords and are infertile [66]. Se-
vere testicular dysgenesis is also observed in mice, which 
carry a p.Val217Gly mutation in the N-terminal ZF do-
main of the protein. This variant abolishes the physical 
interaction of Gata4 with its cofactor Zfpm2 (Fog2) [66–
68]. Pathogenic variants were first reported in GATA4 in 
association with only congenital heart disease (CHD), al-
though a proportion of XY males carrying deletions of 
human 8p23.1 that includes the GATA4 gene have hypo-
spadias and bilateral cryptorchidism [69]. We identified 
a familial case of 46,XY DSD and CHD that affected both 
46,XX and 46,XY individuals [70]. The family carried a 
heterozygous missense mutation (p.Gly221Arg) located 
immediately adjacent to the mouse p.Val217Gly muta-
tion in the N-terminal ZF domain [70]. In functional 

D
ow

nloaded from
 http://karger.com

/hrp/article-pdf/96/2/144/3960835/000521381.pdf by guest on 22 N
ovem

ber 2024



McElreavey/BashambooHorm Res Paediatr 2023;96:144–168154
DOI: 10.1159/000521381

studies, the p.Gly221Arg variant failed to bind to DNA, 
did not transactivate AMH promoter, and lacked the abil-
ity to bind to ZFPM2. Other pathogenic missense vari-
ants in GATA4 have been reported since this initial pub-
lication, but they do appear to be very rare, are located 
within the N-terminal ZF, and may not involve CHD 
([21, 71, 72] and unpublished) (Fig.  2). In large-scale 
exome sequencing studies, other variants have been 
found in 46,XY DSD patients in sequences flanking the 
N-terminal ZF. Although these were initially classified as 
VUS [30], functional studies indicate that these have 
wild-type or near wild-type biological activity and are 
therefore benign [72]. Other missense variants, located in 
regions flanking the N-terminal ZF domain, have been 
proposed to cause isolated hypospadias, and this needs to 
be confirmed by other studies [73].

ZFPM2 (FOG2) is a ZF cofactor that modulates the 
activity of GATA4 by binding to the N-terminal ZF [74]. 
There is considerable evidence in the literature to support 
a role for ZFPM2 in testis determination including the 
observation that XY Zfpm2−/− mice fail to develop testis 
[75]. Since ZFPM2 interacts with GATA4 through the 
GATA4 N-terminal ZF which harbors pathogenic vari-
ants, there is the possibility that variants of ZFPM2 may 
also cause 46,XY DSD. We identified a familial case of 
46,XY GD, where a heterozygous missense variant (p.
S402R) segregated with the phenotype [76]. This variant 
is absent from gnomAD, and it abolishes the interaction 
of the ZFPM2 protein with GATA4. A second indepen-
dent individual had a more complex ZFPM2 genotype 
with a de novo missense variant (p.R260Q) located with-
in the N-terminal ZF of the protein together with homo-

zygosity for a rare missense variant p.M544I [76]. The 
ZFPM2 protein carrying these variants also showed al-
tered biological activity. Pathogenic variants in ZFPM2 
associated with DSD are also very rare. Although hetero-
zygous variants ZFPM2 have been reported in large-scale 
exome sequencing studies, and classified as VUS, func-
tional studies indicated that these variants are benign [30, 
72].

HHAT
The Hedgehog family of secreted signaling proteins 

plays a fundamental role during embryonic development, 
including early testis formation, by acting as morphogens 
to form concentration gradients for long-range and short-
range signaling [36]. Three Hedgehog proteins are ex-
pressed in vertebrates: Sonic (Shh), Indian (Ihh), and 
Desert (Dhh). The latter is secreted by Sertoli cells and 
functions as a commitment factor by inducing the forma-
tion of the Leydig cell lineage [36]. As described earlier, 
biallelic variants in DHH are associated with 46,XY GD 
[37]. Hedgehog acyltransferase (HHAT) is an ER-resi-
dent multipass membrane protein consisting of 10 trans-
membrane domains and 2 re-entrant loops [77]. It is a 
member of the membrane bound-O-acyltransferase 
(MBOAT) family of enzymes that catalyze the attach-
ment of specific fatty acids to secreted proteins [77]. The 
palmitoylation of a member of the Hedgehog family, son-
ic hedgehog, is catalyzed by HHAT.

In a familial case of two sibs presenting with a complex 
phenotype including 46,XY DSD, exome sequencing 
identified a homozygous p.G287V missense variant in the 
MBOAT domain of HHAT [78]. One sib presented with 

Fig. 2. Schematic representation of GATA4 
showing the main functional domains and 
in detail the amino acid composition of the 
N-terminal ZF showing the position of 
variants established to cause 46,XY DSD. 
The valine residue that is mutated in mice 
which shows male-to-female sex reversal is 
highlighted in blue. Other variants associ-
ated with 46,XY DSD are indicated. TAD, 
transcriptional activation domain; NLS, 
nuclear localization signal.
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chondrodysplasia, 46,XY GD, and multiple congenital 
anomalies (Nivelon-Nivelon-Mabille syndrome). The 
other sib was 46,XX with histologically normal ovaries 
and presented with a similar complex somatic phenotype. 
The variant disrupts the ability of the HHAT protein to 
palmitoylate DHH [78]. Hhat−/− mice display severely 
impaired development of fetal Leydig cells, Sertoli cells, 
and testis cords [78]. These data indicate that in the 
mouse, HHAT is required for the initiation of Leydig cell 
formation. Three other families with homozygous HHAT 
variants have been reported [79, 80]. Two 46,XX female 
sisters who presented with microcephaly and cerebellar 
vermis hypoplasia carried a homozygous missense vari-
ant (p.L257P) in the MBOAT domain HHAT [79]. There 
was no evidence of short stature, chondrodysplasia, or 
46,XX GD in the sibs [79]. A second consanguineous 
family presented with multiple malformations in three 
pregnancies [80]. The proband presented with severe mi-
crophthalmia, microcephaly, skeletal dysplasia, facial 
dysmorphia, and 46,XY GD. The other two pregnancies 
also had similar somatic anomalies, but the karyotype is 
unknown. The proband carried a novel biallelic in-frame 
deletion (p.Thr122del) within the MOAT domain. A 
fourth family consisted of a girl with 46,XY GD and mi-
crocephaly, but with normal weight and height for her age 
and no evidence of other anomalies [80]. She carried a 
novel homozygous HHAT missense (p.N443K) variant, 
again located within the MBOAT domain. These data in-
dicate that homozygous variants within the MBOAT do-
main of HHAT cause a very rare syndromic form of DSD 
in 46,XY individuals together with microcephaly as the 
common feature and variable somatic anomalies.

MAMLD1
The mastermind-like domain-containing 1 

(MAMLD1) gene, located on chromosome Xq28, is ex-
pressed together with NR5A1 in Sertoli and Leydig cells 
during early gonad formation [81]. The typical MAMLD1 
phenotype is a 46,XY boy with hypospadias and cryptor-
chidism, bifid scrotum, and/or a micropenis. 46,XY com-
plete GD has rarely been described [82, 83]. A single ho-
mozygous missense variant has been reported in associa-
tion with 46,XX ovarian dysgenesis [84]. Most MAMLD1 
variants that are classified as pathogenic are LOF variants 
(usually nonsense or frameshift variants). However, the 
interpretation of MAMLD1 missense variants associated 
with DSD has generated controversy. There are two ele-
ments to this controversy. The precise biological role of 
MAMLD1 in male genital development is unclear. Mice 
lacking Mamld1 show reduced expression of Leydig cell 

transcripts but otherwise have normal genitalia and are 
fertile [85]. Therefore, there is both an inability to model 
missense variants using the mouse model, and in the ab-
sence of a precisely known biological function, a func-
tionally relevant biological assay is not available. The oth-
er aspect to consider is the population genetics. Some of 
the missense variants proposed to cause XY DSD are ac-
tually common polymorphisms in the general popula-
tion. For example, the reported variants p.H322Q (p.
H347Q) and p.V480A (p.V505A) carried by 6.5% and 
17.8% of African/African Americans are polymorphisms 
[83]. They are both considered benign by ClinVar (Clin-
Var accession IDs 712305 and 804096). The recently pub-
lished p.P334S variant, which is reported as likely patho-
genic [86], is carried by 12% of Europeans, and it is there-
fore unlikely to be pathogenic. Further controversy 
concerning the contribution of MAMLD1 variants to 
DSD arises in familial cases, where the MAMLD1 variant 
does not always segregate with the phenotype [82]. To 
understand the contribution of MAMLD1 to DSD, there 
is a need to distinguish between those individuals carry-
ing rare or novel LOF variants and those individuals who 
are carrying common polymorphisms that in all likeli-
hood do not contribute to the phenotype. Functional 
analysis of potentially pathogenic missense variants has 
shown little difference between the wild-type and pro-
teins carrying missense variants, but this is difficult to in-
terpret in the absence of a known biological activity of 
MAMLD1 [87]. Population genetics data support a role 
for MAMLD1 variants causing DSD. In the general pop-
ulation, the MAMLD1 gene is only partially tolerant to 
LOF variants (https://gnomad.broadinstitute.org/gene/
ENSG00000013619?dataset=gnomad_r2_1) with a small 
number (n = 14) of LOF alleles reported in >68,000 alleles 
sequenced. A recent study and review of the literature by 
Li et al. [86] indicated that approximately one-third of 
MAMLD1 variants that cause XY DSD are LOF. This en-
richment of MAMLD1 LOF variants in DSD cohorts 
compared with the general population is consistent with 
the hypothesis that variants which severely disrupt or 
abolish biological function are indeed responsible for 
DSD. However, in the absence of relevant and robust 
functional assays, the contribution of rare or novel mis-
sense variants to DSD remains to be determined, and 
these are likely to be continued to be classified as VUS in 
genomic studies.

MAP3K1
The mitogen-activated protein kinases (MAPKs) are 

activated through an evolutionarily conserved three-
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component signal transduction cascade, composed of a 
mitogen-activated protein kinase kinase kinase 1 
(MAP3K1), an MAP2K, and an MAPK. In the human, 
pathogenic variants in MAP3K1 are an established cause 
of 46,XY DSD [88]. Precisely how MAP3K1 variants 
cause a failure of testis determination is unclear. Patho-
genic variants are usually heterozygous and for the most 
part are not LOF. They are either missense or splice-site 
variants or in-frame deletions. A disruptive variant, such 
as nonsense or frameshift mutation, has not been report-
ed, perhaps due to the fact that more severe variants of 
protein function may be embryonic lethal. Available data 
suggest that the missense variants associated with 46,XY 
DSD may be subtle gain-of-function variants that result 
in the increased phosphorylation of the downstream 
MAPK targets [88, 89]. Patients carrying MAP3K1 vari-
ants show no other apparent phenotypic anomalies other 
than 46,XY GD [88]. In our experience, about 10% of 
46,XY GD cases harbor rare or novel variants in the 
MAP3K1 gene that could potentially contribute to the 
phenotype. However, the MAP3K1 transcript is large (>7 
kb) spanning 20 exons, and there are over 600 rare (MAF 
<0.001) or novel LOF or missense variants reported in the 
general population (https://gnomad.broadinstitute.org/
gene/ENSG00000095015?dataset=gnomad_r2_1). This 
makes the interpretation of a missense variant carried by 
an individual with DSD difficult, although there is some 
evidence to suggest that pathogenic variants cluster in 
specific functional domains of the protein [90]. However, 
in the absence of a robust and simple functional assay, the 
clinical interpretation of MAP3K1 variants associated 
with 46,XY DSD will remain a challenge and most will 
continue to be classified as VUS.

MYRF
Myelin regulatory factor (MYRF) is a large membrane-

associated homo-trimeric protein that self-cleaves to re-
lease an N-terminal immunoglobulin-type Ndt80 do-
main for the DNA-binding [91–93]. The protein contains 
an intramolecular chaperone domain for trimerization 
and autoproteolysis in the central portion and a trans-
membrane domain in its carboxyterminal part that an-
chors the protein to the membrane of the endoplasmic 
reticulum (ER). Upon autocleavage, the MYRF N-termi-
nal homo-trimer is released from the ER membrane and 
enters the nucleus to function as a transcription factor 
[91–93].

In the murine central nervous system, MYRF is spe-
cifically expressed by oligodendrocytes. MYRF was con-
sidered a myelin-specific transcription factor since con-

ditional knockout of Myrf in oligodendrocyte precursors 
leads to widespread dysmyelination and severe neurolog-
ical anomalies [94]. However, despite its name, MYRF is 
a pleiotropic transcription factor that is widely expressed 
during embryonic development including in the gonads. 
A broad range of phenotypes, including 46,XY and 46,XX 
DSD, are associated with pathogenic variants in the gene. 
Deleterious or LOF and often de novo variants in MYRF 
are associated with congenital diaphragmatic hernia 
(CDH), cardiac anomalies including Scimitar syndrome, 
urogenital anomalies, and an encephalopathy syndrome 
[95–99]. The genitourinary anomalies in XY individuals 
include ambiguous external genitalia, hypospadias, 
horseshoe kidney, chordee, or cryptorchidism. A total of 
14 46,XY individuals with syndromic phenotypes have 
been described to date, with 12 of them presenting with 
urogenital anomalies [96–99]. A further 2 cases of 46,XY 
boys have been described with only urogenital anomalies 
and no other somatic anomalies [96]. These two boys had 
micropenis, hypospadias, small testis, and cryptorchi-
dism with low levels of testosterone and AMH [96]. Five 
affected 46,XX individuals have been described. Of these, 
one was reported to have no internal genital organs with 
a blind-ended vagina. A pair of 46,XX monozygotic twins 
were also reported who presented with small or absent 
ovaries and Mullerian duct aplasia with no other somatic 
anomalies [96]. These data indicate that variants in the 
MYRF gene can be considered a cause of either syndrom-
ic or nonsyndromic 46,XY or 46,XX DSD. There is no 
apparent relationship between the genotype and the phe-
notype; however, only a small number of cases have been 
reported to date, and this may evolve over time.

PPP2R3C
The protein phosphatase 2A (PP2A) is one of the four 

protein phosphatases in eukaryotic cells that is responsi-
ble for the dephosphorylation of serine and threonine res-
idues in proteins. PP2A forms several holoenzyme com-
plexes [100]. The core enzyme consists of a catalytic C 
subunit (PP2Ac) and a regulatory A subunit that is asso-
ciated with a regulatory B subunit. The regulatory B sub-
unit can be classified as a member of the B, B′, or B′′families 
[100]. The gene PPP2R3C encodes the B′′gamma subunit 
of PP2A [101, 102]. A single report has been published 
describing biallelic variants in PPP2R3C with a syndrom-
ic form of 46,XY DSD [103]. Four affected girls from un-
related families presented with 46,XY complete GD, a 
typical facial dysmorphia, low birth weight, myopathy, 
rod and cone dystrophy, anal atresia, omphalocele, sen-
sorineural hearing loss, dry and scaly skin, skeletal abnor-
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malities, renal agenesis, and neuromotor delay. Each girl 
carried biallelic variants in the PPP2R3C gene, establish-
ing this as a new recessive form of syndromic 46,XY GD 
[103]. Many of the syndromic features are consistent with 
impaired chondrogenesis, and consistent with this, hy-
pothesis data suggest that these variants may alter the 
phosphorylation of SOX9 which is required for both tes-
tis determination and chondrogenesis. Phosphorylation 
of SOX9 results in enhanced DNA-binding activity and 
translocation of the protein to the nucleus [104]. Male 
and female heterozygous carriers of these variants exhib-
it various degrees of infertility [103]. Carrier men have 
teratozoospermia, whilst some carrier females were re-
ported to have oligomenorrhea or premature menopause 
[103].

SOX Gene Family Variants and DSD: SRY, SOX8, 
and SOX9
Fifteen percentage of 46,XY CGD patients carry vari-

ants involving the Y-linked testis-determining gene SRY. 
The majority of pathogenic variants are hemizygous mis-
sense variants clustered within the DNA-binding HMG 
domain [105], although rare deletions upstream and 
downstream of the gene as well as variants in the minimal 
promoter region have been reported [105–108]. Patho-
genic variants in the SOX9 gene are associated with Cam-
pomelic dysplasia (CD), and testicular dysgenesis of vari-
able degree is observed in 75% of affected XY individuals 
[109]. In rare occasions, patients with pathogenic variants 
may present with gonadal anomalies but not CD. Mis-
sense variants have been reported in undervirilized men 
with unpalpable testis and either hypospadias or micro-
penis [110]. In recent years, there has been renewed inter-
est in SOX9, with data indicating that rearrangements in-
volving the SOX9 locus are relatively common causes of 
both nonsyndromic 46,XY and 46,XX DSD. These struc-
tural changes, involving multiple regions both upstream 
and downstream of SOX9, may disrupt the appropriate 
developmental timing of SOX9 expression. The structur-
al changes include duplications, deletions, translocations, 
and inversions and explain about 10% of all patients with 
either 46,XY GD or SRY-negative 46,XX (ovo)testicular 
DSD. A comparison of common overlapping rearrange-
ments in human DSD individuals has defined the key reg-
ulatory elements required for the control of SOX9 expres-
sion in the developing gonad. The first regulatory ele-
ment to be defined was termed TESCO [111]. This 1.4-kb 
region is located 13 kb upstream of Sox9 and can posi-
tively regulate Sox9 expression by binding of key sex-de-
termining factors including NR5A1, SRY, and SOX9 it-

self, and it can repress Sox9 expression through the bind-
ing of Foxl2 [111]. However, deletion of the Tesco 
enhancer in mice does not cause male-to-female sex re-
versal, and rearrangements of human TESCO have not 
been reported in DSD [112]. The analysis of individuals 
with either XY or XX DSD has identified other key regu-
latory elements of SOX9. Located approximately 600 kb 
upstream from SOX9, the RevSex element is duplicated in 
46,XX (ovo)testicular DSD and deleted in individuals 
with 46,XY GD [113–116]. The minimal region associ-
ated with 46,XX-SRY-negative DSD has been narrowed 
down to a 40.7- to 41.9-kb element, which contains two 
predicted enhancer motifs [116]. Further analysis of 
46,XX DSD individuals has narrowed the RevSex region 
to a 24-kb minimal region that contains a core enhancer 
motif termed eSR-B [117]. An immediately adjacent and 
nonoverlapping second region that when deleted is asso-
ciated with 46,XY GD is termed XYSR [118]. Further 
analysis of patients has refined XYSR to a minimum crit-
ical region of 5.2 kb [119]. Within this region, a core en-
hancer element, termed eSR-A, has been identified. Dele-
tion of the minimum region including eSR-A causes XY 
GD, whereas duplications of this region cause XX DSD 
[119]. A bioinformatic screen of human sequences up-
stream of the SOX9 locus identified a third potential en-
hancer element of 1,259 bp located immediately upstream 
of TESCO, termed eALDI that may regulate SOX9 expres-
sion although to date no patients have been identified 
with rearrangements or other variants involving the aAL-
DI enhancer [119].

Recent data from murine studies indicate another Sox 
family gene member, Sox8, is involved together with Sox9 
and other transcription factors in testis development as 
well as in the maintenance of Sertoli cell identity [120–
122]. SOX8 is co-expressed with NR5A1 and SOX9 in the 
early stages of human testis determination in Sertoli cells 
and Leydig cells as well as in Sertoli and Leydig cells in 
adult men [123]. SOX8 variants associated with 46,XY 
DSD are rare. Three individuals with 46,XY DSD and re-
arrangements at the SOX8 locus have been described 
[123, 124]. A pericentric inversion and a complex rear-
rangement of SOX8 are associated with 46,XY nonsyn-
dromic and syndromic GD, respectively [123]. A further 
case of 46,XY GD, skeletal and cardiac anomalies, and 
developmental delay had a 560-kb duplication located ap-
proximately 18 kb upstream of SOX8 [124]. Variants in 
the SOX8 coding sequences, all located in regions flank-
ing the HMG-box, are associated with both male and fe-
male infertility. A single case of 46,XY GD has been de-
scribed with a pathogenic missense variant located within 
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the HMG-box [123]. This mutant protein displays domi-
nant negative activity over the wild-type SOX8 and SOX9 
proteins. This may explain the severity of the phenotype 
compared with other SOX8 variants causing infertility. 
However, we cannot rule out the possibility of genetic re-
dundancy between SOX8 and SOX9 function. Thus, it is 
likely that pathogenic missense variants in SOX8 will be 
rare [32].

ZNRF3
In mammalian testis determination, Sry initiates a 

positive feedback loop between Sox9 and Fgf9, which re-
sults in upregulation of Fgf9 and repression of the ovarian 
factor Wnt4 [125]. Canonical WNT/β-catenin signals are 
required for normal ovarian development, and variants 
in either WNT4 or Rspondin-1 (RSPO1), which are re-
quired for the stabilization of β-catenin, can result in syn-
dromic forms of 46,XX DSD or virilization in 46,XX in-
dividuals [125–128]. The transmembrane E3 ubiquitin 
ligase ZNRF3 functions to inhibit WNT signaling by tar-
geting the frizzled receptor for degradation by ubiquiti-
nation and increased membrane turnover. R-spondins 
function to promote WNT signaling by binding to and 
sequestering the negative regular ZNRF3 [129, 130]. In 
exome sequencing studies of the 46,XY DSD cohort, we 
identified two novel ZNRF3 variants and two known 
variants in five individuals [131]. No other DSD-associ-
ated variants were present in these patients. Two 46,XY 
females with GD carried novel ZNRF3 variants 
(c.2767+5G>A and p.Ser554Asn), two sisters with a mild-
er phenotype of 46,XY DSD carried a rare missense vari-
ant (p.Arg768Gly), and a boy with perineal hypospadias, 
intrascrotal testis carried a different, rare missense vari-
ant (p.Arg621Ser). The genomic data were suggestive for 
a role of ZNRF3 in the pathogenesis of 46,XY DSD, but 
they were not conclusive. However, using in vitro cellular 
assays and zebrafish model, we demonstrated that the two 
missense variants (p.Ser554Asn and p.Arg768Gly) dis-
rupted the ability of ZNRF3 to inhibit canonical WNT 
signals compared to wild-type ZNRF3. Mice carrying 
only one copy of the Znrf3 gene on the B6.YAKR back-
ground showed widely different degrees of sex reversal 
consistent with the human DSD phenotypes. Together, 
these data indicate that ZNRF3 variants may contribute 
to a wide spectrum of DSD phenotypes. Since there has 
been only a single published study, the prevalence of 
ZNRF3 variants causing DSD remains to be established 
[32].

Monogenetic Associations with 46,XY DSD Requiring 
Further Genetic or Experimental Evidence

ESR2
Estrogens control development and cell differentia-

tion by binding and activating their nuclear receptors, es-
trogen receptor α (ESR1) and β (ESR2). Mice lacking Esr2 
exhibit both male and female infertility with no evidence 
of DSD [132–134]. Consistent with these observation, a 
heterozygous missense variant (p.K314R) in ERS2 was 
identified in a 46,XX 16.5-year-old-girl who presented 
with primary amenorrhea [135]. Clinical evaluation re-
vealed streak gonads, absent puberty, no breast develop-
ment, infantile uterus, and osteoporosis. This variant is 
absent from public databases, and it is predicted to impair 
the interaction of ESR2 with nuclear coactivator 1 
(NCoA1). Functional studies showed that the variant sig-
nificantly impaired ESR2 signaling and exhibited domi-
nant negative activity over the wild type [135]. A second 
case describing an ESR2 missense variant in association 
with 46,XX primary amenorrhea has been described al-
though it is unclear if the phenotype was due to ovarian 
dysgenesis [136]. The combination of animal models, 
functional studies, and the location of the protein change 
suggests that pathogenic variants in ESR2 are a cause of 
ovarian dysgenesis, with the caveat that only a single pa-
tient has been described to date (Table 2).

The evidence to support a role for ESR2 variants con-
tributing to 46,XY DSD is inconclusive. Monoallelic and 
biallelic variants in ESR2 have been reported in patients 
with syndromic and nonsyndromic 46,XY DSD [137]. 
The phenotypes of these individuals are varied. One case 
presented with a complex developmental phenotype in-
cluding absence of uterus, fallopian tubes, gonads, and 
vagina, anal atresia, rectovestibular fistula, and ocular 
anomalies as well as facial dymorphism. A heterozygous 
3-bp deletion resulting in the loss of a single amino acid 
p.Asn181del within the DNA-binding domain was found 
by exome sequencing. This variant has an allelic frequen-
cy of 3:2,000 46,XY men of South Asian origin (https://
gnomad.broadinstitute.org/variant/14-64735621-
CATT-C?dataset=gnomad_r2_1). Although rare, this al-
lelic frequency in healthy 46,XY men excludes this variant 
as the cause of the phenotype. The second case was an XY 
female with clitoromegaly, urogenital sinus, and absent 
uterus. Since FSH and LH levels were within normal 
range rather than elevated, it suggests that the individual 
may have had androgen insensitivity. Information on the 
gonads or gonadal hormones was unavailable. This girl 
carried a rare heterozygous missense variant p.G84V. No 
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somatic anomalies were observed. The third case diag-
nosed with 46,XY complete GD carried a rare heterozy-
gous p.L426R missense variant. Establishing an associa-
tion between these ESR2 variants with 46,XY DSD is chal-
lenging since each of the clinical phenotypes is distinct, 
the functional analysis of the mutant proteins did not 
show a statistically significant change compared to the 
activity of the wild-type protein, and ESR2 expression 
could not be detected in the gonad of an 8-week-old male 
human embryo [137]. Therefore, the association of ESR2 
variants with 46,XY DSD remains to be established.

FGFR2
FGFR2 plays an essential role in osteoblast differentia-

tion and proliferation and is required for normal skeleton 
development, embryonic patterning, trophoblast func-
tion, lung morphogenesis, and skin development [138]. 
In XY mice, the signaling pathway involving Fgf9 and its 
receptor Fgfr2 is required to repress pro-ovary Wnt4 sig-
naling in order to promote testis development [139]. 
Mice lacking Fgfr2 in the early developing XY gonad 
show a failure of testis determination [139]. Although this 
establishes that FGFR2 is involved in testis formation in 
mice, there is a lack of convincing evidence to indicate 
that FGFR2 variants in the human cause 46,XY DSD. A 
single 46,XY individual with GD and craniosynostosis 
has been reported to carry a heterozygous p.Cys342Ser 
variant [140]. However, heterozygous pathogenic vari-
ants in the FGFR2 gene are associated with a range of 
phenotypes including Crouzon syndrome, Pfeiffer syn-
drome, and Apert syndrome, which share a common fea-
ture craniosynostosis [141–144]. DSD has not been re-
ported in affected 46,XY individuals with these syn-
dromes. The amino acid substitution, p.Cys342Ser, was 
previously reported to cause Crouzon or Pfeiffer syn-
dromes and was carried by 46,XY males with no evidence 
for DSD [141, 144]. This suggests that the GD seen in the 
patient carrying the FGFR2 variant is caused by an inde-
pendent pathogenic variant involving a DSD gene else-
where in the genome.

HMGCS2
Variants in the gene 3-hydroxy-3-methylglutaryl co-

enzyme A synthase 2 (HMGCS2), encoding a metabolic 
enzyme in the liver important for energy production 
from fatty acids, have been proposed to cause human 
DSD [145]. The expression of Hmgcs2 in the developing 
gonad of the mouse is consistent with a role in early testis 
and ovary development, but mice that lack Hmgcs2 have 
normally developed gonads even on a sensitized genetic 

background [145]. In a screen of 46,XY DSD patients with 
GD, 2 patients were identified with a heterozygous dele-
tion and a predicted deleterious heterozygous missense 
variant (p.Arg501Pro) in HMGCS2, respectively [145]. 
However, autosomal recessive variants, including LOF 
variants, in HMGCS2 are a well-established cause of 
HMG-CoA synthase-2 deficiency [146] with no evidence 
of DSD. Heterozygous carriers are healthy. Data from the 
gnomAD database indicate that HMCS2 is not a con-
served gene in human populations (pLI = 0) unlike other 
genes known to be involved in testis determination, which 
are intolerant to variation (e.g., DMRT1, SOX9, and 
NR5A1). These data do not provide compelling evidence 
in favor of causality of HMGCS2 variants in human DSD.

LHX9
LHX9 is a member of the LIM homeobox gene family 

that contains a homeodomain and 2 cysteine-rich LIM ZF 
domains. Variants in the LHX9 gene are excellent candi-
dates to cause DSD, since both XY and XX mice lacking 
Lhx9 are female and do not have gonads [147]. A single de 
novo and novel missense variant p.Q316R located within 
the DNA-binding homeodomain of the protein was re-
ported in a 46,XY girl who presented with normal facial 
features, bilateral distal thumb hypoplasia with small nails 
and mild hypoplasia on the fifth fingernails bilaterally, ab-
sent left great toe, and hypoplastic right great toe with ab-
sent distal phalanx [148]. Although functional studies 
were performed, this is a good candidate variant for 46,XY 
DSD as it impacts a highly conserved amino acid residue 
in a well-characterized functional domain, and it is pre-
dicted to disrupt the biological function. One or more oth-
er independent cases of DSD with variants in LHX9 would 
establish this as a rare cause of 46,XY DSD.

STARD8
Rho-GTPases are important molecular switches that 

control a wide variety of signal transduction pathways in all 
eukaryotic cells. STARD8 is a Rho-GAPase that maps to 
chromosome Xq13. The protein consists of a sterile alpha 
motif (SAM), GAP, and START (steroidogenic acute regu-
latory protein [StAR]-related lipid transfer) domain [149, 
150]. A missense variant in STARD8 has been proposed to 
cause 46,XY GD in a familial case of DSD [151]. Two sisters 
with 46,XY GD were found to carry a hemizygous missense 
variant (p.Ser993Asn; rs201005000, also termed p.Se-
r913Asn in a shorter isoform), inherited from their hetero-
zygous mother. Gonadal tissue of one of the sisters con-
tained Leydig cells overloaded with cholesterol droplets, 
i.e., structures previously identified in 46,XY DSD patients 
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carrying variants in the STAR gene encoding a related 
START domain family member. The p.Ser993Asn variant, 
which in silico predictions indicate as benign, is present in 
Bulgarian populations with a relatively high allelic frequen-
cy (1/500 alleles). Although STARD8 is a promising candi-
date, the evidence for a role of pathogenic variants in 
STARD8 causing DSD remains inconclusive.

WWOX
The human WWOX gene, located at a common fragile 

site FRA16D on chromosome 16q23.3–24.1, encodes a 
tumor suppressor WW domain-containing oxidoreduc-
tase, WWOX [152]. The relationship between variants in 
the WWOX gene with DSD was first proposed by the 
identification of a boy with 46,XY DSD who carried a ma-
ternally inherited deletion removing exons 6–8 of the 
WWOX gene [153]. Although WWOX continues to be 
used in targeted panel and exome analysis of DSD indi-
viduals [30–32], there is now a large body of work to in-
dicate that variants in WWOX are not associated with 
DSD. Homozygous or compound heterozygous variants 
are associated with autosomal recessive spinocerebellar 
ataxia-12 (SCAR12) [154] and early infantile epileptic en-
cephalopathy-28 (EIEE28; also known as WOREE syn-
drome) [155]. These data are supported by animal models 
[154, 156]. Other families have been published with bial-
lelic variants causing these syndromic phenotypes [157–
160]. In these families, there is no evidence of DSD in 
either affected individuals or carriers of deleterious vari-
ants. Variants in WWOX should therefore not be consid-
ered a cause of human DSD.

Monogenic Causes of 46,XX DSD

The most common form of 46,XX DSD is congenital 
adrenal hypoplasia. Excellent overviews of monogenic 
causes of adrenal insufficiency have been recently pub-
lished [161, 162]. World-wide 21-hydroxylase deficiency 
(21-OHD, CYP21A2) is the most common cause of auto-
somal recessive CAH with a variable incidence of 
1:10,000–1:20,000 depending on the degree of consan-
guinity within the population [161]. Other rare autoso-
mal recessive forms of CAH include 11 beta-hydroxylase 
deficiency (CYP11B1), 3 beta-hydroxysteroid dehydro-
genase deficiency (HSD3B2), and 17 alpha-hydroxylase 
deficiency (CYP17A1) and P450 oxidoreductase deficien-
cy caused by biallelic variants in the gene POR [161].

46,XX DSD due to errors in sex-determination, i.e., the 
formation of testis tissue in a 46,XX gonad, presents as 

either ovotesticular or testicular DSD. These phenotypes 
are usually caused by the presence of the testis-determin-
ing gene SRY on one of the X chromosomes. Very rare 
cases are due to variants in the WNT signaling pathway. 
Only 4 families have been identified with a recessive form 
of syndromic 46,XX testicular/ovotesticular DSD due to 
variants in the RSPO1 gene ([163] and references there-
in). Variants in WNT4 associated with 46,XX DSD are 
even rarer. Heterozygous LOF variants involving WNT4 
have been described in three 46,XX patients with mild 
virilization but with an apparent lack of testis tissue [164]. 
A single family has been described with a homozygous 
missense variant in WNT4 associated with a complex 
syndrome of renal agenesis, adrenal hypoplasia, and pul-
monary and cardiac abnormalities. Testicular tissue was 
present in the affected 46,XX individuals who exhibited 
various degrees of virilization [164]. Here, we will discuss 
some of the more recent and surprising causes of 46,XX 
DSD that have been identified through exome sequenc-
ing (Table 3).

WT1
The mammalian Wilms’ tumor 1 (WT1) gene encodes 

for a transcription factor with over 30 potential isoforms 
that are generated by a number of mechanisms including 
alternative transcription start sites, alternative translation 
start sites, splicing, and RNA editing. WT1 has a complex 
biology and as a result has a role in a myriad of develop-
mental processes including but not limited to homeosta-
sis and disease of tissues arising from the intermediate 
and lateral plate mesoderm, mesenchymal epithelial plas-
ticity, and fundamental aspects of transcription and epi-
genetic regulation ([165] and references therein). Point 
mutations in WT1 are a well-established cause of two rare 
forms of 46,XY DSD: Frasier syndrome (a splice site vari-
ant) and Denys-Drash syndrome (DDS; variants in exon 
8 or 9). 46,XY individuals with DDS have ambiguous or 
female external genitalia with normal or undescended 
testes or GD with mesangial sclerosis of the glomerulus 
and may develop Wilms’ tumor [166]. Frasier syndrome 
is characterized by focal nodular glomerulosclerosis and 
46,XY DSD with streak gonads and feminized to female 
external genitalia [167]. Another less-frequent syndrome, 
and one that overlaps with DDS, is Meacham syndrome, 
which is characterized by CDH, ambiguous genitalia, and 
complex congenital heart defects but no renal abnormal-
ities in 46,XY individuals [168]. Until recently, variants in 
the WT1 gene were considered to have a mild effect on 
ovarian development. Fifteen WT1 variants have been re-
ported in 46,XX girls that are associated with either ap-
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parently normal functioning ovaries, premature ovarian 
failure, or streak ovaries [169, 170].

Recently, in a series of 78 children presenting with 
SRY-negative 46,XX OTDSD/TDSD, we identified 7 fam-
ilies with recurrent missense and frameshift variants im-
pacting the 4th ZF of WT1 [14]. This is one of the most 
common causes of SRY-negative 46,XX (ovo)testicular 
DSD. In vitro transient transactivation assays demon-
strated that the WT1 protein with mutated 4th ZF shows 
aberrant biological activity compared to the wild-type 
protein. Remarkably, when introduced into a human 
granulosa cell line, the variant results in the upregulation 
of endogenous Sertoli-specific transcripts. Mutating the 
4th ZF of Wt1 results in masculinization of the gonad in 
XX mice [14]. These variants may induce testis formation 
through the ability of the mutated, but not the wild-type 
protein, to physically interact with the key pro-ovarian 
and anti-testis factor β-catenin. This inappropriate inter-
action is predicted to result in the direct or indirect inac-
tivation of pro-testis signaling pathway(s). OTDSD/
TDSD has been reported to be associated with WT1 ZF4 
variants in other studies [171, 172]. The question of 
whether variants in WT1, which cause 46,XX DSD, are 
also associated with somatic anomalies as well as an in-
creased tumor risk is unclear. Of the 7 original cases of 
46,XX DSD, none were reported to have renal disease nor 
tumor development although one individual had a dia-
phragmatic hernia [14]. However, 6 of the 7 affected in-
dividuals were young children, and they will require long-
term monitoring. The 46,XX DSD girl with atypical gen-
italia reported by Gomes and colleagues [171, 172] was 
diagnosed with proteinuria at 14 years of age indicating 
that there is a risk of renal disease developing within this 
subgroup of 46,XX DSD.

NR2F2
The chicken ovalbumin upstream promoter-tran-

scription factor type II (COUP-TFII also termed NR2F2) 
is a member of the steroid/thyroid nuclear receptor su-
perfamily and is structurally related to the orphan nu-
clear receptor NR5A1 [173]. Globally, murine Coup-tf2 
is highly abundant at E14-E15 in the mesenchymal com-
partment of the developing organs and declines after the 
completion of organogenesis [173]. The absence of 
NR2F2 in the terminally differentiated epithelium sug-
gests that NR2F2 plays a major role in the mesenchymal-
epithelial transition. In mice, Coup-Tf2 is involved in 
the development of multiple organs and tissues by mod-
ulating the expression of downstream targets to pro-
mote cellular differentiation, proliferation, migration, 

survival, and intercellular communication [173, 174]. 
Homozygous Nr2f2 null mice die at embryonic day 10 
due to its requirement for angiogenesis and heart devel-
opment [175]. Nr2f2 also plays essential roles in cell dif-
ferentiation and organogenesis of the stomach, uterus, 
diaphragm, limbs, and skeletal muscle. There is emerg-
ing evidence over the last few years for an important role 
for NR2F2 in Leydig cell formation. In XY male mice, 
NR2F2 is essential for the differentiation and function 
of fetal and adult Leydig cells [176–178]. Inactivation of 
Nr2f2 during prepubertal stages of male sexual develop-
ment results in infertility, hypogonadism, and a block in 
spermatogenesis due to a failure of progenitor Leydig 
cells to mature [179]. Murine Nr2f2+/− XX females show 
a wide range of reproductive anomalies including re-
duced fecundity, irregular estrus cycles, delayed puber-
ty, retarded postnatal growth, and reduced levels of ste-
roidogenic enzymes, but virilization and testis develop-
ment has not been reported [179]. XX mice lacking 
Nr2f2 have both Müllerian and Wolffian ducts in the 
mesonephros [180]. The ovaries of these mice do not 
produce androgens, but an androgen-independent acti-
vation of the p-ERK pathway in the Wolffian duct epi-
thelium was observed that leads to the presence of Wolff-
ian duct tissue [180].

In the human, heterozygous, and usually de novo, 
variants have been reported in NR2F2 associated with 
CHD and/or CDH [181–183]. In a screen of 79 individu-
als with 46,XX SRY-negative testicular or ovotesticular 
DSD, we identified three children with near-identical het-
erozygous frameshift variants in at the N-terminal of 
NR2F2 [8]. These are predicted to be complete LOF be-
cause the frameshift variants are located at the N-termi-
nal region of the protein. In two of three children, the 
variant was de novo. All three children presented with 
remarkably similar phenotypes. Each child presented 
with CHD, one child with CDH, and two children with 
blepharophimosis-ptosis-epicanthus inversus syndrome. 
The role of NR2F2 in human ovarian development is un-
known. Functional studies on the mutant protein were 
not performed as the protein-truncating variant occurs at 
the N-terminus of the protein, and the truncated protein 
does not contain any known functional domains. The 
contribution (if any) of NR2F2 variants to 46,XY DSD 
remains to be established.

NR5A1
NR5A1, also known as steroidogenic factor-1 (SF-1), 

is an orphan nuclear receptor transcription factor that 
plays a key role in many aspects of reproductive develop-
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ment and function [184]. In 46,XY individuals, the phe-
notypes associated with NR5A1 variants include a wide 
range of DSD conditions with or usually without adrenal 
insufficiency, including testicular dysgenesis with or 
without Müllerian structures, anomalies of androgen 
production, hypospadias, progressive androgenization at 
puberty, and male infertility with normal genital develop-
ment [185]. In 46,XX individuals, pathogenic variants are 
associated with primary ovarian insufficiency and early 
menopause [185]. Recently, the range of phenotypes as-
sociated with the variant in NR5A1 has been extended to 
include 46,XX DSD. Amino acid variants of a specific ar-
ginine residue, p.Arg92, located in the highly conserved 
“A-box,” which is required for appropriate DNA-bind-
ing, are associated with 46,XX ovotesticular DSD or tes-
ticular DSD [16, 184–188]. To date, this phenotype has 
not been observed with missense variants elsewhere in 
the NR5A1 protein in 46,XX individuals. More than 
twenty 46,XX (ovo)testicular DSD cases with changes in 
the p.Arg92 residue have been reported establishing the 
causality of p.Arg92. The phenotype is highly variable, 
and the variant can be transmitted by a normal fertile 
mother. Changes in the Arg92 variant result in an absence 
of DNA binding by NR5A1 [16]. How this change in bio-
logical activity results in testis formation in 46,XX indi-
viduals is unclear although it has been proposed that the 
pathogenic variant may abolish the ability of NR5A1 to 
repress the pro-ovarian pathway of WNT4/β-catenin [16, 
188].

Conclusions

The widespread availability of exome and genomic se-
quencing is revolutionizing our understanding of the ge-
netic causes of rare congenital disorders, including DSD. 
However, the generation of large genomic datasets also 
raises questions concerning the interpretation of the 
data. The first point to consider is the interpretation of 
variants in genes that are well established as a cause of 
DSD. Aside from in silico tools that can provide informa-
tion on the effects of a variant on protein function, the 
interpretation of these variants can be aided by simply 
determining their allelic frequencies in publicly available 
population genetic datasets. Using population genetics 
data is a very powerful tool to exclude the possibility that 
a gene or a specific variant is responsible for DSD. There 
is a need to consider the wealth of human population ge-
netics data that are now available for different popula-
tions worldwide, which often includes the karyotype of 

the individual carrying each variant. These data can be 
rapidly used to exclude either a gene or specific variants 
as causal (e.g., ESR2 and MAMLD1). Databases such as 
gnomAD also offer tools that determine if a variant is 
likely to be pathogenic based on observed population ge-
netics data. Determining the ancestry of the DSD family 
therefore is essential for the interpretation of the popula-
tion genomic datasets. In parallel with this, for genes that 
are established to cause DSD such as MAP3K1 and 
MAMLD1, there is a need for simple, robust, and bio-
logically relevant functional assays to determine variant 
pathogenicity. In the absence of functional data, the con-
tribution of missense variants in genes such as MAP3K1 
and MAMLD1 will continue to be classified as VUS. A 
good example of where functional studies can aid inter-
pretation of pathogenicity is missense variants reported 
in GATA4, where variants located within the N-terminal 
ZF are pathogenic and those outside are not pathogenic 
[21, 70–73]. Variant interpretation will be improved if 
variants that are identified in routine diagnostic screen-
ing are made available publicly through databases such 
as ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), 
which reports the relationships between human varia-
tions and phenotypes, together with supporting evi-
dence. As more DSD variants are added to such publicly 
available databases, not only will the accuracy in the in-
terpretation of pathogenicity of such variants improve 
but also genotype-phenotype relationships may be estab-
lished.

The second point to consider is a growing number of 
new genes which are reported to cause DSD. For some 
genes, their contribution to DSD is questionable. This can 
be due to either the absence of supporting evidence or 
that available data indicate that the gene is unlikely to 
cause DSD (e.g., population genetics data, gene known to 
cause other phenotypes but not DSD, and functional data 
show no difference from wild-type protein). For some 
new genes, such as LHX9, causality may be established if 
other independent DSD cases with potentially pathogen-
ic variants are reported with supporting functional stud-
ies. Sufficient affected individuals with the same or simi-
lar phenotype carrying potentially pathogenic variants 
may allow a statistical comparison with appropriate an-
cestry-matched control groups.
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