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Abstract

Solid epidemiological evidence indicates that part of the risk of obesity in adulthood could be programmed during prenatal development by the quality of maternal
nutrition.Nevertheless, themolecularmechanisms involved aremostly unknown,which hinders our capacity to develop effective intervention policies. Here, we discuss
the hypothesis that mechanisms underlying prenatal programming of adult risk are epigenetic and sensitive to environmental cues such as nutrition. While the
information encoded in DNA is essentially stable, regulatory epigenetic mechanisms include reversible, covalent modifications of DNA and chromatin, such as
methylation, acetylation etc. It is known that dietary availability of methyl donors has an impact on the patterns of gene expression by affecting DNA methylation at
regulatory regions, a likely basis for reprogrammingdevelopmental plasticity. TheAgouti andAxin-fused genes, aswell as the embryonic growth factor IGF2/H19 locus are
examples of diet-induced modulation of phenotypic traits by affecting methylation of gene-regulatory regions. Recent work has evidenced an unsuspected role for
chromatin asmetabolic sensor. Chromatin is susceptible to a number of post-translationalmodifications thatmodulate gene expression, among them the GlcNAcylation
of histone proteins and other epigenetic regulators. Intracellular levels of the precursor molecule UDP-GlcNAc, and hence the degree of global chromatin GlcNAcylation,
depend on the energetic state of the cell, making GlcNAcylation a functional link between nutrition and regulation of gene expression. Dietary interference with these
regulatory mechanisms could effectively counteract the early-life programming of adult risk.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Obesity and related conditions are currently explained by a linear view
of disease progression, in which expansion of white adipose tissue (WAT)
generates a proinflammatory microenvironment that spreads through
organs and tissues, hindering their function and causing the devastating
comorbidities associatedwith obesity. Thismodel can be refined by adding
genetic predispositions and factors linked to lifestyle, such as diet or
exercise, that influence the onset and progression of obesity and obesity-
related conditions (see [1,2] for recent reviews). In this way, obesity,
although modulated by genetic predispositions, could be considered as an
“acquired” environmental disease to be treated by targeting causative
elements such as defective or excessive nutrition or sedentary lifestyle.

In recent years, however, the concept of obesity as an “epigenetic
disease” has begun to be discussed. According to this perspective,
environmental impacts onmaternal nutrition during early embryo life
leave a “nutritional imprint”with long-term effects on the promotion
of obesity and related conditions in adulthood [3]. The present review
addresses the hypothesis that adult obesity and related conditions
may be programmed, at least in part, very early in life, focusing special
attention on the recent explosive increase in data on epigenetic
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regulation andmodification (DNAmethylation, histonemodifications,
and non-coding RNAs). Here, we review recent literature on the
epigeneticmechanisms putatively involved in programming the long-
term effects of early-life nutrition, and how these could be modulated
by environmental/nutritional cues.

Nutrition can affect the expressionof a number of genes by its impact,
in the formofmethyl donors such as folate, on the degree ofmethylation
of their regulatory regions, althoug folate supplementation could also
have some undesired consequences on the stability of the epigenome.
Wewill highlight recent reports that underscore a role for chromatin as a
metabolic/nutrient sensor through the post-translationalmodification of
histone proteins,which links regulation of gene expression to availability
of nutrients and metabolites from the intermediary metabolism (see [4]
for a recent review).

2. Long-term effects of early-life nutrition on obesity and obesity-
related risk factors

2.1. Fetal/neonatal malnutrition and adult risk factors

Sound epidemiological evidence has shown thatmalnutrition in early
life not only affects fetal/neonatal growth but also has long-term
consequences for adult health. Almost a century ago, Kermack,
McKendrick and McKinlay hypothesized that the first 15 years of life
influence the lifelong health of the individual [5], while Forsdahl
demonstrated a significant association between infant mortality in the
early years and adult mortality (ages 40–69 years) by coronary artery
disease (CAD), and concluded that “great poverty in childhood and
adolescence, followed by prosperity, is a risk factor for arteriosclerotic heart
disease” [6]. Similarly, Barker and Osmond evidenced a consistent,
positive correlation between infantmortality in 1921–1925 and ischemic
heart disease mortality rates in 1968–1978 in England and Wales [7],
results confirmed by their further work showing a strong positive
correlation between lowweight at birth and at one year of age and rates
of CAD death in adulthood [8]. The idea that growth impairment at
conception or during fetal development could be linked to a number of
chronic adult diseases, such as CAD [7], glucose intolerance [9], type 2
diabetes (T2D) [10], or obesity and hypertension [11] is known as the
“developmental origins of adult disease” (DOAD) hypothesis [3]. This
challenges the consideration of the womb as a highly protective milieu
that buffers the embryo fromenvironmental stressors, and acknowledges
that the embryo is sensitive to outside stimuli and that the prenatal
period is critical for modulating long-term disease predisposition by
reprogramming the developmental plasticity of the embryo, likely by
selectively impairing cell differentiation and organ growth [12,13].
Furthermore, the “thrifty phenotype” hypothesis states that fetal
undernutrition will cause the embryo to prepare for a life of scarcity,
but subsequent accelerated overgrowth (catch-up) in conditions of
affluence in the early post-natal period could overcome these protective
barriers, facilitating fat deposition, obesity, andobesity-related conditions
[10,14]. Fetal/neonatal overnutrition could have similar long-term effects
on health ([15] and references therein), as reported for infants who are
large for their gestational age when born to mothers with diabetes [16],
indicating that postnatal fast weight gain could be the critical factor
explaining their increased risk for cardiovascular diseases (CVD) [17].
This idea has been supported by the results of two prospective trials in
which randomly assigned cohorts of small-born infants were fed either a
nutrient-enriched formula or a control formula, which showed that the
nutrient-enriched diet increased fat mass later in childhood [18].

2.2. Historical cohorts to study theassociationof earlynutritionand laterdisease

Well-documented historical episodes of hunger have been used
to study the association between prenatal nutritional stress and the
risk for adult chronic diseases [19], with the first demonstration
coming from the cohort of people affected by the Dutch Winter
Famine of 1944–1945 (DWF) [20]. Beginning in October 1944,
civilian transport in the western part of Holland was totally blocked
by the German Army, causing a dramatic shortage in food supply and
a subsequent reduction in the daily rations, which reached their
lowest value (over 400 Kcal/day) between December 1944 and April
1945. Upon the end of the war, the blockade was raised and daily
rations soon reached normal pre-war values [21]. The DWF cohort
includes the original inhabitants of the blocked areas well as their
descendants born around the time of hunger, who have been
stratified by famine exposure at the first, second, or third trimester
of fetal development [21]. In the current DWF population older than
50 years, a number of studies have linked prenatal famine exposure
with numerous characteristics: decreased fetal growth and reduced
tolerance to glucose in adulthood (especially when exposure
occurred at late gestation [22]); higher BMI andwaist circumference,
in women but not in men [23]; a more atherogenic lipid profile [24],
and obesity, but only when exposurewas during the first trimester of
pregnancy [20,21], an effect that affected up to the third generation
[25]. Furthermore, prenatal famine exposure has been related with
increased risk of T2D [26], overall adult mortality inwomen [27], and
CAD [28,29], although other authors have failed to find this
association between prenatal famine exposure and adult CAD
[30,31] (see Table 1 for a summary of the long-term effects of fetal
nutritional stress on obesity-related risk factors).

The Leningrad Siege Study (LSS) also investigated the relationship
betweenmaternal malnutrition and risk factors in adult offspring. The
siege of Leningrad (now St. Petersburg) by the German Army for
almost three years (September 1941–January 1944) resulted in more
than one million deaths, mainly of starvation due to daily rations of
only 300 Kcal/day during the worst of the siege [32]. The LSS results
contradicted but complemented those of the DWF study, showing no
associations between intrauterine/infancy starvation and glucose
intolerance, dyslipidemia or CVD risk later in adulthood [32,33],
even 70 years after the end of the siege [34], probably because the LSS
population had no catch-up period of accelerated growth in early
childhood, but rather lived in harsh conditions until the end of the
siege [35]. This suggests that a period of postnatal nourishment must
be relevant in determining the impact of maternal malnutrition on
future health [36].

Striking evidences indicate that disease predisposition could be
transferred to successive generations. The cohort of people born in
Överkalix parish in northern Sweden at the turn of the 20th century
showed a direct association between food availability up to the
puberty of grandparents and parents and mortality due to CVD and
T2D in the grandsons [37]; cardiovascular mortality was linked to the
father's nutritional status and diabetes to the paternal grandfathers'
[38]. Furthermore, sharp changes in food supply up to the puberty of
paternal grandmothers increased CVD mortality of their sons'
daughters [39]. In this sense, the DWF cohort also has been studied
in the context of the transgenerational effects of prenatal exposure to
famine, assessing the health of the children (F2) of parents born
during the famine (F1) to undernourished women (F0). In one such
study, an increase in body mass index (BMI) was found in F2 of F1
fathers, but not F1 mothers, when compared with offspring of control
(not famine-exposed) fathers [25]. The authors did not find significant
differences in the prevalence of CAD, T2D, high cholesterol, or
hypertension in the F2 of exposed parents compared to the F2 of
unexposedparents [25]. Similarly, Painter et al. detected an increase in
neonatal adiposity and poor adult health in the F2 of F1 women
exposed “in utero” to F0 famine, but did not find transgenerational
impacts of famine exposure on the F2 rates of CAD or T2D in offspring
of the exposed F1 [40]. Nevertheless, this F2 cohort is still young (mean
age 37 years) and rates of chronic diseases could increase in the future
in this group [25].



Table 1
Consequences of maternal malnutrition during the Dutch famine (1944–1945) on the development of chronic diseases at adulthood of their descendants

CONSEQUENCES ON PRENATALLY EXPOSED DESCENDANTS AGE* MATERNAL EXPOSITION TO HUNGER** REFERENCE

Significantly higher obesity rates 19 First half of gestation [20]
Significantly lower obesity rates 19 Last trimester of gestation [20]
Higher BMI and waist circumference in women but not in men 50 Early gestation [23]
No effect of prenatal famine on systolic or diastolic blood pressure 50 Early or late gestation [250]
Reduced concentrations of plasma factor VII 50 Early gestation [251]
Significantly higher LDL-HDL cholesterol ratios 50 Early gestation [252]
Higher prevalence of coronary heart disease 50 Early gestation [253]
Decreased glucose tolerance 1998 Late gestation [22]
Perceived poor health 50 Early gestation [254]
Earlier onset of coronary artery disease 50 Early gestation [28]
Higher rates of microalbuminuria 48–53 Mid gestation [255]
Similarly decreased glucose tolerance at 50 years and 58 years 50/58 All periods of gestation [256]
No effect of exposure on adult mortality up to 57 years 57 All periods of gestation [257]
Higher systolic and diastolic blood pressure after stress tests 58 Early gestation [258]
Reduced insulin secretion (lower disposition index) 58 Mid gestation [259]
Not associated to a greater prevalence of metabolic syndrome 58 All periods of gestation [260]
Elevated total cholesterol, triglycerides and LDL-chol. In women only 58 All periods of gestation [261]
No increase in CAD risk or Framingham risk 58 All periods of gestation [30]
Reduced carotid and femoral arteries intima media thickness 58 All periods of gestation [262]
Increased weight and adiposity in women but not in men 59 All periods of gestation [263]
Less DNA methylation at the IGF2 gene compared with unexposed siblings 60 Early gestation [119]

AGE: Age at which the analysis was performed in descendants of mothers exposed to famine.
(*) When the age of the subjects is not stated, the year at which the study was published is indicated.
MATERNAL EXPOSURE TO HUNGER: gestation period in which mothers were exposed to famine.
(**) Late gestation: babies born between 7 January1945 and 28 April 1945.
Mid gestation: babies born between 29 April 1945 and 18 August 1945.
Early gestation: babies born between 19 August 1945 and 8 December 1945.
For the control groups not exposed to famine see each reference.

Fig. 1. New families of RNAs which control the flow of genetic information, and their
functional interactions. The solid box shows components of the original “Central Dogma
of Molecular Biology”, which described the flow of genetic information from DNA to
protein and considered mRNA essentially as an information-encoding, unstable
intermediate [41,42,223]. This perspective has been updated by adding relevant
families of non-coding RNAs, discovered recently, which are also transcribed from
genomic DNA andhave a functional role in the control of gene expression. These include
the following: piRNAs, Piwi-interacting RNAs; sncRNAs, small non-coding RNAs;
lncRNAs, long non-coding RNAs; and miRNAs, micro RNAs. Solid arrows indicate
transcription, the dotted arrow stands for translation, and the dashed arrows represent
a regulatory relationship between two species of nucleic acids. Functional relationships
among these are as follows: A- microRNAs that regulate stability or translability of
mRNAs [61]; B- lncRNAs that regulate mRNA processing, stability and degradation
[224]; C- lncRNAs that can function as “miRNA sponges” to reduce their effective
concentration [225]; D- miRNAs that target and downregulate lncRNAs [226]; E-
antisense, AS-lncRNAs that regulate expression of neighboring genes, lncRNAs (as XIST)
involved in imprinting and silencing of gene expression, or enhancer RNAs (eRNAs) that
activate gene expression [79,227,228], among others; F- generation of new regulatory
regions by retrotransposition near other functional genes [229];G- small RNAs involved
in retroelement silencing in the germline [230]. This figure reviews only some of the
most relevant non-coding RNA families, and is neither a systematic catalog of these
elements nor of their functions. We have focused on the functional interactions
between coding and non-coding RNAs and with DNA, not considering their impacts on
proteins.
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3. Epigenetics: the next frontier in the regulation of gene expression

3.1. Challenging dogmas on genome structure and function

Recent years have seen a paradigm change in ideas about the flow
of genetic information. The original linear model,“DNA makes RNA
makes protein”, for many years considered the central dogma of
molecular biology [41,42], has been replaced by a multilayered
process characterized by the pervasive expression of many different
regulatory RNAs frommultiple genomic loci in addition to the protein-
coding mRNAs (Fig. 1). International sequencing efforts have shown
that the human genome is composed of just 20,000 to 25,000 protein-
coding genes [43–45], with a best-guess estimate of 22,333 [46], a
figure thatwould account for amere 2% of the total genome length [47]
and far fewer than the 100,000–120,000 protein-coding genes
previously estimated [48–50]. Nevertheless, the number of transcrip-
tional units could exceed 60,000 [51] by including a plethora of
previously unclassified non-protein-coding RNAs, such as microRNAs
(miRNAs), antisense-RNAs (AS-RNAs), promoter-associated RNAs
(PALRs, PASRs), other long non-coding RNAs (lncRNAs), etc. [52–54].
Recent data suggest that approximately 80% of the genome could be
considered biochemically active [55], most of it in the form of DNase I-
accessible loci or candidate regulatory sequences [56–58]. Taken
together, all these data draw a new image of the eukaryotic nucleus in
which the genome would be pervasively transcribed, even in intronic
and intergenic sites [59], with a complex population of regulatory
short and lncRNAs complementing transcription of protein-coding
genes [60].

3.2. microRNAs and long non-coding RNAs:new actors on the gene-
regulation stage

MicroRNAs (miRNAs) are small RNAs (over 22 nucleotides long)
with important roles in post-transcriptional gene regulation. MiRNAs
are transcribed as pri-miRNA precursors; after two processing steps,
they generate the mature miRNAs, which are subsequently exported
to the cytoplasm where they associate to their target mRNAs and
induce their degradation or interfere with their translation (see [61]
for a review). As of March 2016, the entire human miRNAome was



Table 2
Summary of selected histone post-translational modifications (acetylation or
methylation) and their association to functional states of chromatin

HISTONE
LABEL

CHROMATIN FUNCTIONAL STATE REFERENCES

H2BK120ac Active o poised TSS. Absent from core promoters. [232]
H3K4ac Marks promoters of actively transcribed genes [233]
H3K9ac Enriched at the promoters of actively transcribed genes [234]
H3K14ac Associated to active promoters [235]
H3K27ac Associated to active enhancers and promoters [235,236]
H3K36ac Associated to active promoters [237]
H3K4me1 Associate to enhancers of differentiation genes [238]
H3K4me2 Associate to active chromatin [239]
H3K4me3 Associated to actively transcribed genes [240]
H3K9me1 Associate to enhancers of differentiation genes [238]
H3K9me2 Repressive mark [241]
H3K9me3 Repressive signal in gene-poor regions [242]
H3K27me1 Associate to enhancers of differentiation genes [238]
H3K27me2 Repressive signal mediated by polycomb repressive

complex 2
[243]

H3K27me3 Temporary repressive signal in gene-rich regions
Mediated by polycomb repressive complex 2

[242]

H4K8ac Associate to active chromatin [244]
H4K12ac Associate to active chromatin [245]
H4K16ac Associate to active chromatin [244]
H4K20me1 Repressive mark of facultative heterochromatin [246]
H4K20me2 DNA damage response [247]
H4K20me3 Constitutive heterochromatin [248,249]

Only individual labels are shown, not their combinations.
Bivalent domain: histone tag that represses developmentally expressed genes while
maintaining them poised for activation upon differentiation.
TSS: Transcription Start Site.
The code for histone labels is as follows: (H2B, 3, 4)-Histone 2B, 3 or 4, (K)-lysine, (ac)-
acetylation, (me)-methylation. The number after the lysine code indicates the position
modified, and me1, 2, 3 indicates mono- di- or tri methylations. This is a selection of
significant histone labels and by nomeans an exhaustive inventory of all known histone
post-translational modifications (PTMs).
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described as formed by 1881 precursors and 2588 mature miRNAs
(www.mirbase.org, mirbase release 21 [62]). MiRNAs are highly
promiscuous, so that a single miRNA can interact with a number of
different mRNAs which in turn can be regulated by several different
miRNAs [63]. Aberrant miRNA expression profiles have been linked to
a number of humandiseases, such as leukemias [64], solid tumors [65],
atherosclerosis and CVD [66,67], chronic pain [68], and renal fibrosis
[69], among others. Alterations in the expression ofmiRNAs have been
detected not only in the primary tissue but also in blood [70], urine
[71], and exosomes [72], andmiRNAs (ormiRNA-targeting sequences)
are currently being tested for therapy development [73].

The family of lncRNAs constitutes an extremely heterogeneous
population of functionally unrelated RNAs longer than 200 nucleotides,
whichhave important roles in development, differentiation, anddisease
[74–76]. Currently estimated at more than 56.000 [77], the number of
lncRNAs more than doubles the number of protein-coding genes in the
human genome, thus giving a hint of their functional complexity. Most
of the lncRNAs are natural antisense transcripts, transcribed from the
complementary chain of target genes, which likely cis-regulate its
genomic locus by recruiting the histone-modifying machinery to the
regulatory regions of the target genes [78]. Another common family of
lncRNAs is the enhancer RNAs (eRNAs) or lncRNAs transcribed from
functional enhancer sequences and associated to specific histonemarks
(high H3K4me1, H3K4me2, and H3K27ac and low H3K4me3 and
H3K27me3) which could have a role in the activation of genes [79,80],
probably by facilitating the long-distance interaction of enhancers and
their cognate promoters by forming or stabilizing DNA loops [81].

3.3. Methylation ofDNAandhistones, and the regulation of gene expression

Genes are precisely regulated by controlling access of the transcrip-
tional machinery to their regulatory regions (promoters or enhancers).
This process is mediated by the covalent modification of regulatory DNA
sequences, mainly by methylating position 5 of cytosines from CpG
dinucleotides through the activity of the family of DNA methyltransfer-
ases (DNMTs), which transfer a methyl group from S-adenosyl-
methionine (SAM) to the cytosine [82]. CpGpairs concentrate inproximal
(CpG islands) or distal (CpG shores) parts of the gene promoter, and in
the methylated form are usually associated to gene silencing, although
they are also involved in parental imprinting (see [83] for a review).
Patterns of CpG methylation are strictly regulated and stable, and their
alterations have been associated to diverse diseases, including cancer.

The function of histones in chromatin is also subjected to epigenetic
regulation.Histones have protrudingN-terminal andC-terminal tails that
expose many positively charged aminoacids (K/R), which modulate the
interaction with other histones and with the negatively charged DNA
[84]. Histone modifications (known as tags or marks) contribute to the
regulation of gene expression by changing the net charge of histone
proteins in order to regulate the strength of their interaction with DNA
(and hence its accessibility) and by providing docking sites for the
interaction of components of the transcriptional machinery [85] (see the
description of the histone-tag nomenclature at the legend of Table 2).
Aminoacids in the protruding histone tails are susceptible to many
different covalent modifications “in vivo”, such as methylation, acetyla-
tion, ribosylation, phosphorylation, ubiquitination, sumolation, biotynila-
tion, andmore than 50 different tags [86,87]. Furthermore, the existence
of numerous histone genes, which generate up to 57 histone variants of
differing lengths and sequences in humans, greatly increases the number
of aminoacids susceptible to modification ([88]).

The stability of epigenetic marks is critical to control the long-term
effects of events that alter the epigenetic landscape. While the genetic
information encoded in DNA can be regarded as essentially stable,
epigeneticmarks are reversible and respond to endogenous, as well as
environmental (nutritional, hormonal) stimuli. These dynamic mod-
ifications are “interpreted” by a number of families of epigenetic
regulators [89] that have been classified as “tag-writers” (histone
methyltransferases and acetyltransferases) [90], “erasers” (histone
demethylases and deacetylases), or “readers”, proteins that include
domains of the plant, chromo, Tudor, or MBT families, among others,
and recognize different tagged histones (see [91] for a recent review).
Elucidating the mechanisms that promote, maintain, read, and erase
epigenetic marks is currently an area of intense research aiming to
develop small molecules able to modulate expression of disease-
associated genes at the epigenomic level [92].

4. Regulation of gene expression by folate availability: the agouti,
axin-fused and IGF2/H19 loci

As reported above, the DWF cohort evidenced a number of risks in
adulthood that could be traced to specific periods of embryonic
development duringwhich themother experienced nutritional stress.
A likely explanation for this finding was that the stress burden could
affect (reprogram) the expression of genetic loci critical for embryo
development. In this sense, recent work has evidenced that the folate-
dependent methylation of DNA regulatory sites constitutes a direct
link between nutrition and regulation of gene expression. In this
section we review data on the effects of folate availability on the
regulation of gene expression in two animal models, the agouti and
axin-fused loci, and in the human IGF2/H19 locus, a complex genetic
structure involved in the control of early embryo development.

4.1. Genomic structure of the agouti(Avy), axin-fused (AxinFu) and IGF2/
H19loci

Agouti mice show a characteristic yellow coat because the protein
encoded by the agouti gene (ASP, for agouti signaling peptide) blocks

http://mirbase.org
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eumelanin synthesis in hair follicles [93]. Interestingly, the “viable
yellow” (Avy) allele, a mutation in the agouti gene due to the insertion
of a partial long terminal repeat (LTR) of an intracisternal A particle
(IAP) retrotransposon, prompts the ubiquitous expression of the
agouti gene because this LTR functions as a non-tissue-specific cryptic
promoter [94,95]. The Avy allele is epigenetically unstable and can lose
methylation at the LTR so that heterozygous (Avy/a) mice, which also
carry the recessive null (a) allele for a black coat, display continuously
variegated agouti fur depending on the methylation status of the
cryptic promoter, ranging from yellow in mice with a demethylated
promoter to obscure-agouti/pseudoagouti fur in mice with an over-
methylated promoter [96]. These methylation patterns are randomly
fixed early in embryonic life and are maintained throughout life [97].

Similarly to the agouti gene, the axinFu locus derives from the
insertion of an intracisternal A particle (IAP) retrotransposon, in this
case in the intron 6 of the axin gene. This insertion generates a number
of aberrant axin transcripts, some of themusing the 3′ LTR of the IAP as
a cryptic promoter [98]. The wild-type AXIN protein controls the
formation of embryonic axis by repressingWnt signaling [99]. Work
by Rakyan and cols. Showed that hypomethylation of the cryptic
promoter (IAP) of the AxinFu allele caused the upregulation of AXIN
expression, with the subsequent downregulation of Wnt activity that
resulted in kinking of the distal tail [100]. On the other hand, the
parentally imprinted IGF2/H19 human locus encodes the insulin-like
growth factor II (IGF2) gene, which promotes embryo and placental
growth [101] and is expressed almost exclusively from the paternal
chromosome [102], as well as the maternally expressed lncRNA-H19,
which limits the growth of the placenta through the regulated
processing of miR-675 that is embedded in the first exon of the H19
gene [103]. The IGF2/H19 locus includes an intergenic, CpG-rich,
differential methylation region (DMR) as well as a distal enhancer
region, immediately downstream of the H19 gene, which together
drive the tissue-specific, allele-restricted, and developmentally con-
fined expression of the IGF2 and H19 genes [104] (Fig. 2). The
intergenic DMR regulates IGF2/H19 gene expression; its demethylated
form (maternal allele) recruits the regulatory factor CTCF, which
functionally blocks the downstream enhancer, repressing the growth-
promoting effect of the IGF2 gene and activating the growth-limiting
H19 gene. In contrast, methylation of the intergenic DMR (paternal
Fig. 2. Transcriptional regulation of the imprinted IgF2/H19 locus. Shown are the IgF2 and H19
specific expression: the differentially methylated region (DMR) and the distal 3′ transcriptiona
unmethylated so that it can bind the insulator zinc-finger protein CTCF, which blocks the com
transcriptional activation of theH19 gene. On the other hand, CTCF fails to bind to the heavilym
the distal enhancer and the IgF2 promoter to induce its expression.
allele) allows the enhancer to activate the IGF2 promoter while
repressing the H19 gene. In this way, the degree of intergenic DMR
methylation acts as a balance, promoting (through IGF2 expression) or
limiting (through H19 expression) early embryonic growth [105].
4.2. Folate availability regulates expression of the viable yellow agouti
(Avy) and axin-fused (AxinFu) loci

Chromatin-methylating enzymes, i.e., DNA and histone methyl-
transferases, use S-adenosylmethionine (SAM) as universal methyl
donor and folate to regenerate SAM through the one carbon
metabolism pathway [106], suggesting that folate is an important
component of the gene regulatorymachinery. Folate deficiencies have
been acknowledged as the basis of many nutrition-related diseases
[107,108], which supports this hypothesis and highlights folate as a
critical link between nutrition and gene expression. This relationship
has been evidenced by work with agouti and axin-fused model mice.
Thus, in agouti mice, supplementation of (a/a) dams with a methyl-
rich diet shifted the coat color of the Avy/a offspring from yellow to the
brown pseudoagouti [109], a result also seen after supplementation of
(a/a) dams with genistein, a major soy isoflavone [110]. In both cases,
the phenotypic shift coincided with an increased methylation of the
IAP insertion region at the agouti locus in the pups [111].

Change in coat color is not the only phenotypic trait associated to
the agouti locus. Heterozygous mice harboring the lethal yellow (Ay)
or viable yellow (Avy) mutations showed a number of pleiotropic
effects, including obesity, increased tumor susceptibility, and embry-
onic lethality [112]. The obesogenic role of the Avy allelewas due to the
agouti gene product, the agouti-signaling peptide (ASP), since a
transgene overexpressing ASPwt induced obesity in the recipient mice
[113] and incubation of mature 3 T3-L1 adipocytes with recombinant
ASP increased expression of adipogenic transcription factors [114].
Interestingly, this obesogenic effect proved to be sensitive to dietary
supplementation with methyl donors or with genistein, which
reversed the effect of the Avy allele by overmethylating its cryptic
promoter [110,115]; this constitutes experimental evidence of a
dietary modification in pregnant mothers that directly affects the
obese phenotype of the offspring.
genes as well as the most relevant controlling elements which regulate their parentally
l enhancer. In this parentally imprinted locus the maternal chromosome keeps the DMR
munication between the IgF2 promoter and the distal enhancer [231], resulting in the
ethylated DMR from the paternal chromosome, which facilitates the interaction between
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On the other hand, as in the case of the Agouti locus, supplementing
AxinFu dams with methyl donors before and during pregnancy
significantly increased themethylation of theAxinFu locus and reduced
the incidence of tail kinking in their offspring [116]. Nevertheless, the
mechanisms involved in this nutrient-induced methylation of regu-
latory regions are complex and must include numerous (epi)genetic
factors to accurately control the expression of Agouti or Axin-fused
genes [117]; Dolinoy et al. showed that yellow agouti mice had less
repressive histone tag H4K20me3 in the LTR of the IAP, compared to
their pseudoagouti littermates [118].

4.3. The Dutch Winter Famine caused life-long alterations in the
methylation pattern of the IGF2/H19 locus in the offspring of affected
pregnant mothers

In an experimental study, Heijmans et al. studied the methylation
pattern of the IGF2-DMR in the DWF cohort of individuals conceived
during the Dutch famine. Six decades after being exposed to the
famine, the IGF2-DMR was hypomethylated (see Fig. 2), compared
with their non-exposed siblings, when the exposure was periconcep-
tional but not when individuals were exposed late in gestation,
suggesting that early-life nutritional stress had an impact on the
methylation pattern of the IGF2/H19 locus, and that this altered
pattern could be maintained for decades until adulthood [119].
Furthermore, the degree of methylation of the IGF2-H19 locus was
directly associated with fetal and infant growth, with children born
small-for-gestational age (SGA) showing a decreased level of IGF2-
DMR methylation in white blood cells obtained from umbilical cord,
compared with control children [120]. On the other hand, Steegers-
Theunissen et al. showed that periconceptional supplementation of
pregnant mothers with 400 μg of folic acid significantly increased
methylation at the IGF2-DMR locus of the child, compared with the
offspring of non-supplemented mothers; however, the authors also
found an inverse association between IGF2-DMR methylation and
birth-weight that is difficult to explain by the current models of
regulation of the IGF2-H19 locus but that could indicate involvement
of other genomic loci [121].

Other loci related to growth and metabolism also have been
studied. Those encoding interleukin-10 (IL-10), leptin (LEP), ATP-
binding cassette subfamily A member 1 (ABCA1) or the lncRNAs
maternally-expressed 3 (MEG3) and GNAS-antisense (GNAS-AS) were
found to be overmethylated in the famine-exposed individuals vs.
non-exposed siblings, while the INS-IGF2 lncRNA, also at the IGF2
locus, was found to be undermethylated. This result further supports
the hypothesis that early-life nutritional stress could cause wide-
spread alterations in DNAmethylation [122]. A genome-wide analysis
of DMRs in the DWF cohort detected a number of differentially
methylated CpG elements–such as enhancers, open chromatin
regions, and developmental enhancers– associated to the prenatal
famine, usually at regulatory regions, suggesting that they could
influence the expression of many different genes and especially of
genes linked to metabolism and growth [123]. On the other hand, the
promoters of the glucocorticoid receptor GR1-C, peroxisome prolif-
erator-activated receptor gamma (PPAR-γ) lipoprotein lipase, or
phosphatidylinositol 3 kinase p85 (PI3K-p85) did not differ in
their degree of methylation in the blood of individuals exposed “in
utero” to famine, compared to non-exposed controls [124], suggesting
that the nutrition-dependent changes in methylation could be gene-
or tissue-restricted.

5. Epigenetic reprogramming of developmental plasticity: adipose
tissue and pancreas

The interventional or longitudinal studies described above have
clearly established that nutrition can modulate the global levels of
methylation at gene-regulatory regions. Nevertheless, this top-down
approach (from nutrition to gene expression) has produced very
scanty data on the specific genes or gene networks de/methylated, so
that it is difficult to delineate the mechanisms linking overall
nutrition-dependent epigenetic alterations with increased adult risk
of non-communicable diseases (NCDs). An alternative to the top-
down approach appeals to the phenotypic plasticity of tissues and
organs at critical periods of early embryo development (mainly to
control stemcell proliferation and/or cell differentiation) to determine
whether the expression of the genes controlling these processes could
be modulated by external stimuli. In this chapter, we discuss recent
work on genes important to the development of organs and systems
that maintain metabolic homeostasis, such as the pancreas and the
adipose tissue, and whose expression has been shown to be
modulated by nutritional cues.
5.1. Maternal malnutrition affects the epigenetic regulation of pancreas
development

Pancreatic and duodenal homeobox 1 (PDX1) is a transcription
factor that is essential for the survival and function of the mature
pancreatic β-cells, to the extent that disruption of the Pdx1 gene
(Pdx1−/− mice) results in the arrest of pancreatic development at an
early embryonic stage [125]. Adult expression of PDX1 has been
shown to bemodulated by early-life nutrition. Thus, in amicemodel of
intrauterine growth retardation (IUGR), which predisposes to T2D
development in adulthood, Park et al. showed that the Pdx1 gene
underwent epigenetic modifications that downregulated Pdx1 ex-
pression in β-cells from over 50% (vs. control) in IUGR fetuses to null
values in adults [126]. Furthermore, the authors were able to map this
regulatory behavior to a region of the Pdx1 proximal promoter that
included a CpG dinucleotide in a binding site for the USF-1
transcription factor, which was progressively methylated in IUGR
rats but not in control animals. Methylation of the Pdx1 proximal
promoter was accompanied by histone deacetylation, since inhibition
of HDAC partially restored Pdx1 expression [126]. Similar results have
been recently described by Abuzgaia et al., who used a rat model of
gestational maternal protein restriction, which increases susceptibil-
ity to T2D. In a low-protein group, they detected downregulation of
Pdx1 mRNA and protein expression, as well as of its downstream
target genes insulin and glucose transporter Glut2, compared with
controls [127]. Furthermore, a genome-wide analysis of CpG-methyl-
ated sites made in pancreatic islands from IUGR rats showed that
changes in cytosine methylation in over 1400 loci preceded the
development of T2D, giving a hint about the number of loci potentially
involved in the pathogenesis of this disease [128], while a high-
throughput analysis of gene expression led to the detection of 253
differentially expressed genes in the livers of exposed vs. non-exposed
offspring, among them many encoding enzymes related to fat
metabolism and potentially involved in the development of metabolic
diseases [129].

Diet-induced changes in the levels of histone tags also have been
described in a number of developmentally important genetic loci.
Maternal low protein diets have been associated to downregulation of
mRNA and protein expression of the tumor suppressors CDKN2AP16

and p21WAF1/Cip1 in the mammary glands of offspring, concomitant
with a reduction in acetylated H3 and in H3K4me2 in their promoter
regions [130,131]. In a rat model of gestational maternal protein
restriction, Sandovici et al. showed the downregulation of Hnf4a, a
transcription factor gene critical to pancreatic function, in the islets of
the exposed pups, compared with control pups, as well as an increase
in the repressive tag H3K9me2 and a decrease in the active mark
H3K4me1 in theHnf4a intronic enhancer,with a subsequent reduction
in its interaction with the Hnf4a promoter [132].
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5.2. Maternal malnutrition affects the regulation of adipogenic genes

The adipose tissue of an adult organism is mainly composed of
white adipose tissue (WAT) plus some remnants of the thermogenic
brown adipose tissue (BAT). WAT has a double physiological role as
regulator of the body's energy balance and as an endocrine organ that
controls a number of physiological and pathophysiological mecha-
nisms through the release of hormones and adipokines. This highly
dynamic tissue adapts to external stimuli by increasing the number or
size of adipocytes (see [133] for a recent review). Preadipocyte
differentiation is controlled by the early transcription factors C/EBP-β
and C/EBP-γ, which regulate PPAR and C/EBP-α, adipogenic master
genes that promote adipocyte terminal differentiation through their
ability to activate the expressionof adipocyte-specific genes (see [134]
for a recent review). Among the genes activated by PPAR-γ there are
many involved in controlling lipid metabolism and insulin/IGF
signaling [135], as well as the uncoupling protein-1 (UCP1), a
functional marker for BAT whose mRNA peaks soon after birth in
largemammals and then is rapidly lost, together with its transcription
activating factors PPAR-α and coactivator PGC-1α, as part of a
developmental switch from BAT to WAT [136].

Prenatal undernutrition has been shown to have an impact on the
fetal fat mass as well as in the expression of adipogenic genes. In this
regard, ovine maternal nutrient restriction during the early gestation
resulted in offspring with more adipose tissue and higher levels of
UCP2 and PPARαmRNAs than unrestricted controls, while no changes
were detected in the levels of UCP1, PPAR-γ, or the long and short
forms of the prolactin receptor (PRLR) [137]. Furthermore, in mice,
protein restriction of pregnant mothers resulted in lower levels of
leptin mRNA and protein in the offspring [138]. In contrast, pups born
to mothers submitted to a high-fat diet showed worse glucose
tolerance and higher leptin levels and lower adiponectin levels in
the adipose tissue than their control littermates, whichwas associated
with higher H3K9Ac and lower H3K9me2 levels at the adiponectin
promoter and lower levels of H4K20me at the leptin promoter [139].

6. Chromatin as a nutrient sensor: nutrition-induced post-
translational modifications of histone proteins and their effects
on chromatin function

Nutrition has long been considered a major environmental factor
responsible for changes in the transcriptome, mainly by the binding of
small ligands tonuclear receptors, transcription factors, or cofactors [140].
Nevertheless, recent years have seen a number of reports in which small
metabolites or nutrients controlled patterns of gene expression not by
binding to single, specific targets but by modulating the global level of
post-translational modifications (PTMs) of DNA, histones, and other
epigenetic regulators (see [141] for a recent review). These “epigenetic
metabolites” constitute a functional linkbetweennutritionand regulation
of gene expression, with poor nutrition andmetabolite shortage affecting
the appropriate deployment of epigenetic tags. This highlights chromatin
architecture as a marker of the energetic and metabolic state of the cell.
According to this model, chromatin would act as a metabolic sensor to
adjust global patterns of gene expression to the dynamic changes in the
concentration of specific metabolites, while ensuring its epigenetic
inheritance [142]. This novel perception of metabolite-dependent
chromatin function will surely provide researchers with conceptual
tools tounravel the epigenetic components underlying reprogrammingof
gene expression by early-life nutritional stress, as well as to study the
mechanisms that translate these regulatory alterations in risk increases to
adult disease. In this section,we review the regulatory functionof the best
characterized of these epigenetic metabolites: O-linked-N-acetylglucosa-
mine (O-GlcNAc), NAD+, and acetyl-CoA, as well as their functional
relationship with chromatin and Sirtuin1, two of the better characterized
metabolic sensors.
6.1. Intracellular O-GlcNAcylation depends on the extracellular levels of
glucose through the nutrient sensor UDP-GlcNAc

Among the different intermediate metabolites with a confirmed
role in the establishment or maintenance of histone PTMs, O-linked-
N-acetylglucosamine constitutes a class of its own. Addition of an O-
linked-N-acetylglucosamine group (O-GlcNAc) to Ser/Thr residues of
nuclear proteins [143] targets hundreds of proteins, among them
epigenetic regulators and chromatin-associated proteins such as
histones,members of the polycomb repressive complex, and a number
of HDACs directly involved in the regulation of gene expression (see
[144] for a recent review).

GlcNAc is reversibly added to its target proteins as a single residue
by the O-linked GlcNAc transferase (OGT), which uses the UDP-
GlcNAc sugar as substrate, and is removed by the O-GlcNAcase (OGA)
enzyme. Both reactions constitute the “O-GlcNAc cycle”. O-GlcNAc and
O-GlcNAcylated products can be found not only in the nucleus or
cytoplasm, but also in the endoplasmic reticulum-Golgi axis where
they are used in the biosynthesis of glycoproteins, glycosaminogly-
cans, or glycolipids [145]. The precursor form UDP-GlcNAc, which is
synthesized by the hexosamine biosynthetic pathway, can be
considered a sensor of the metabolic state of the cell [146], since its
synthesis requires four metabolites, glucose (carbohydrates), gluta-
mine (aminoacids), acetyl CoA (lipids), UTP (nucleotides), and ATP as
energy donor; their availability directly determines UDP-GlcNAclevels
and subsequently those of intracellular O-GlcNAcylation [146]. Thus,
the levels of UDP-GlcNAc reflect the nutrient status of the cell, with
extracellular levels of glucosemodulating the extent of intracellular O-
GlcNAcylation [147]. Moreover, the O-GlcNAc cycle is functionally
integrated with other nutrient sensing pathways such as mTOR, AMPK
(which is activated by a low ATP/AMP ratio), MAPK, and insulin-AKT
and the direct interaction of OGT with tyrosine kinase receptors, PIP3
sites, or p38MAPK has been described, suggesting that these signaling
pathways could also be modulated by O-GlcNAcylation (see Fig. 3
and [148]).

6.2. The activity of a number of epigenetic regulators of gene expression
is controlled by O-GlcNAcylation

In a gene expression analysis in C. elegans, Love et al. found over
800 promoters modified by O-GlcNAcylation in which disruption of
the O-GlcNAc cycle led to alterations in the pattern of gene expression,
many of them linked to lipid/carbohydrate metabolism or microRNA
expression; this constituted a nutrient-responsive program of gene
expression [149]. In amicemodel, male levels of OGT and of O-GlcNAc
were seen to be reduced by early prenatal maternal stress, which
affected hypothalamic gene expression as well as the landscape of
brain microRNA expression [150].

On the other hand, Medford et al. demonstrated that the chronic
ingestion of a sugar and saturated fat-rich diet (Western diet)
increased protein O-GlcNAcylation in the hearts of rats, without
modifying the levels of the OGT/OGA enzymes, which suggested that
accumulation of O-GlcNAcylated products was due to the increased
availability of nutrients [151]. This result has the utmost importance
because it links the degree of protein O-GlcNAcylation to the historical
record of nutrient ingestion. Among the proteins that were post-
translationally modified by O-GlcNAcylation, the group of gene
expression regulators is well represented. Several excellent reviews
on the O-GlcNAcylation of transcription factors have been recently
published (see [152] and references therein); herewewill focus on the
epigenetic mechanisms affected by O-GlcNAcylation.

On the functional side, O-GlcNAcylation has been shown to
regulate chromatin dynamics through two different mechanisms: i-
by tagging members of the polycomb group of proteins (PcG) [153]
and other epigenetic regulators, such as the Ten-Eleven Translocation



Fig. 3. Chromatin as a nutrient sensor: GlcNAcylation of chromatin and epigenetic regulators links the nutritional status of the cell withmechanisms regulating gene expression. Nutrient
availability regulates levels of UDP-GlcNAc through the hexosamine biosynthetic pathway; thismechanism is controlled by a number of nutrient-sensing pathways (mTOR, AMPK, etc.).
GlcNAcylation of chromatin and other epigenetic regulators such as histones, polycomb group proteins (PcG), HDACs, TET (Ten-Eleven Translocation) proteins, and associated
transcription factors (see text for details) have a global impact on the regulation of gene expression.
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(TET) family ofDNAhydroxylases/demethylases [154], and ii- bydirectly
targeting the four core histones in chromatin [155,156], although it
seems that there is also some extent of crosstalk between the two
mechanisms. Thepolycombgroupproteins are transcriptional regulators
that mediate the repression of numerous genes along the development
to adulthood. Polycomb group proteins form two polycomb-repressive
complexes (PRC1 and PRC2), which recognize and bind polycomb-
responsive elements (PREs) at the regulatory regions of their target
genes. PRC2s are H3K27 trimethyltransferases while PRC1 binds to
H3K27me3 and monoubiquitinates H2AK119, with the overall effect of
repressing the expression of the target genes [157].

In two thought-provoking studies, the polyhomeotic protein
(Ph),one of the components of PRC1,was shown to be O-GlcNAcylated
[158], while the O-linked GlcNAc transferase (OGT) enzyme was
identified as the PcG member previously known as super sex combs
(sxc) [158,159]; O-GlcNAcylation-defective null-mutants (sxc/Ogt−/−)
wereunable tomaintainpolycomb-mediated transcriptional repression
[158]. This last result strongly supports a role for the nutrient sensor
O-GlcNAc in the repression of polycomb target genes and provides
mechanistic insight on the functional relationship among nutrients
and the transcriptional machinery. On the other hand, O-GlcNAc sites
have been detected in all the core histones, cross-talking with other
histone PTMs. Thus H3S10GlcNAc impaired the phosphorylation of the
same residue [155], H2BS112GlcNAc facilitated H2BK120 monoubiqui-
tination [160], and H3T32GlcNAc reduced phosphorylation at H3S10,
H3S28, and H3T32 [161].

The O-GlcNAcylation of target histoneswas facilitated by the binding
of OGT to the TET2 and TET3 (Ten-Eleven Translocation 2/3) proteins at
active transcription start sites enriched in the activationmarkH3K4me3,
while loss of OGT or TET2/3 reduced the target gene expression
[154,162]. In this way, O-GlcNAcylation would have a dual role in the
control of gene expression, reinforcing the repressive role of polycomb
on its targets and facilitating transcription by binding to TET2/3 proteins.
How these two opposite roles are regulated is currently unknown.

6.3. Alterations in thebalanceofO-GlcNAcylation contribute tohumandisease

Recent years have seen evidences that an altered flow of O-GlcNAc
could contribute to obesity, CVD, and T2D [163], to the extent that
determination of O-GlcNAc in blood has been proposed as a biomarker
for early metabolic dysfunction in youngsters [164]. As stated above,
levels of O-GlcNAc depend on the balance between the opposite
activities of OGT (GlcNAcylation) and OGA (O-GlcNAc removal), and
changes in their activity have been associated to human pathology,
although the molecular mechanisms involved have not yet been
clarified. The chemical inhibition of OGA resulted in increased levels of
GlcNAc and impeded insulin-dependent phosphorylation of Akt and
GSK3β, leading to insulin resistance in 3 T3-L1 adipocytes [165]. In
contrast, heterozygous OGA-deficient mice had reduced insulin
sensitivity, hyperleptinemia, and showed a de-regulated expression
of genes associated with growth, innate immunity, and the metabo-
lism of glucose, lipids, sterols, and calcium [166]. On the other hand,
increasing GlcNAc levels by the transgenic overexpression of OGT
induced insulin resistance and hyperleptinemia when OGT was
expressed in muscle and adipose tissue [167], and was associated
with obesity and fatty liver when it was expressed in liver, likely by
interfering with the metabolism of Apo B and Apo A-I [168].

6.4. Other metabolic sensors: SIRT1, acetyl-CoA, and FAD

In addition to O-GlcNAc, other metabolic sensors link DNA and
chromatin PTMs (and hence regulated gene expression) to the levels
of differentmetabolites in away that could be epigenetically inherited,
potentially contributing to the long-term effects of nutrition on adult
disease risk. One of the best characterized is Sirtuin1 (SIRT1), a nuclear
NAD+-dependent protein deacetylase which links cellular metabolic
status (such as NAD+ levels, modulated by dietary niacin) to the
dynamics of chromatin architecture and regulated gene expression
through the deacetylation of histones and other nuclear regulatory
proteins [169]. In this sense, SIRT1 has been considered as a master
regulator of the transcriptional networks that control lipid metabo-
lism, gluconeogenesis, insulin secretion, and inflammation [170]. A
recent analysis of the liver acetylome from Sirt1-deficient (Sirt1−/−)
mice allowed the detection and identification of a group of nuclear
proteins directly deacetylated by SIRT1 “in vitro”, among them a
subunit of the SWI/SNF chromatin remodeling complex and five
proteins involved in RNA processing [171]. Other chromatin-associ-
ated proteins have been characterized as substrates for the SIRT1
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deacetylase activity, including the transcriptional repressor promye-
locytic leukemia zinc finger protein (PLZF) [172], the histone
methyltransferase mixed-lineage leukemia 1 (MLL1) associated to
H3K4 trimethylation at certain promoters [173], and SATB1homeobox
1, a regulator of high-order chromatin structure [174]. Also related to
NAD+sensing, the globular macro domain constitutes a highly
conserved protein fold present in histone variants (macroH2A),
modifiers (macro-PARPs), and chromatin remodelers (Alc1) (see
[175] for a recent review), which functions as an ADP-ribose binding
module [176], likely mediating transcriptional regulation in response
to nutrient availability.

On the other hand, acetyl-CoA is the acetyl donor for histone lysine
acetylation by histone acetyl transferases (HATs). Independently of its
role in the synthesis of O-GlcNAc, acetyl-CoA has been considered a
metabolic sensor by itself.Wellen et al. showed that suppression of the
ATP-citrate lyase activity (the enzyme that converts glucose-derived
citrate to acetyl-CoA) resulted in a global decline in histone
acetylation, and more specifically in the hypoacetylation of the
promoter region of the glucose transporter GLUT4 gene in adipocytes,
thus linking glucose availability to the activation of a glucolytic
program of gene expression [177]. Finally, other metabolites whose
levels change in response to the nutrient status and are involved in the
epigenetic regulation of gene expression have been described ([178],
and references therein). These include FAD, a riboflavin (vitamin B12)
derivative that works as a cofactor of LSD1, a H3K4 histone
demethylase [179].

6.5. Effect of plant bioactive compounds on epigenetic regulators

In recent years, a number of dietary bioactive compounds of plant
origin have been characterized as epigenetic modulators of gene
expression because of their ability to reshape histone post-transla-
tional modification marks or DNA methylation patterns, although
their exact role in maintaining the altered patterns required to
establish lifelong effects remains poorly understood. In this section,
we review recent reports on the direct effect of small secondary plant
metabolites, mainly polyphenols and isothiocyanates, on the activity
of enzymes directly involved in the structural/regulatory modifica-
tions of chromatin.Wewill not discuss the effects of caloric intake or of
changes in micro/macronutrient consumption because there are
excellent recent reviews on this topic [180].

Polyphenols such as curcumin, resveratrol, genistein, or ECGG
constitute a complex class of plant secondary metabolites with
an accepted role as epigenetic modulators. Curcumin (diferuloy-
methane) is a bioactive compound with anti-oxidative, anti-
inflammatory, and anti-lipidemic properties and contributes to
epigenetic regulation by downregulating expression of DNA methyl-
transferases (DNMT1, 3 A and 3B) [181] and inhibiting HAT activity
[182]. Furthermore, curcumin treatment was seen to alter expression
of a large set of miRNAs, and consequently of their target genes [183],
to upregulate the tumor suppressor lncRNA MEG3 [184], as well as to
suppress expression from the H19 locus, but not from IGF2, in cancer
cell lines [185]. Resveratrol is another phytochemical with an
established role as epigenetic regulator. Resveratrol activates SIRT1
by increasing its binding to laminA [186] and inhibits mono-
ubiquitination of histone H2B at K120 [187], which has an impact on
the landscape of histone marks. Furthermore, resveratrol has been
shown to regulate expression of the chromatin modifier metastasis-
associated protein 1 (MTA1), a component of the silencing “nucleo-
some remodeling and deacetylating complex” (NuRD) [188]. On the
other hand, the soybean isoflavone genistein has been observed to
promote hypermethylation of CpG islands in specific mouse genes
[189], as well as to modulate H3K19 methylation or deacetylation of
specific promoters through a reduction of SIRT1 activity [190], while
garcinol has been characterized as a potent inhibitor of histone
acetyltransferases [191], cambinol as an inhibitor of SIRT1 and SIRT2
[192], and chaetocin as an inhibitor of histone H3 lysine 9 (H3K9), a
methyltransferase suppressor of the variegation 3–9 homolog 1
(Suv39 h1) [193].

The list of phytochemicals with epigenetic regulatory potential is
not restricted to polyphenols, but should also include sulforaphane
(SFN), a dietary isothiocyanate, and allyl sulfides [194,195], which
function as HDAC inhibitors “in vitro”, and green tea catechins,
especially epigallocatechin gallate (EGCG), which have been shown to
downmodulate DNA methylation by attenuating the effect of DNA
methyltransferase 1 (DNMT1) through a yet unknown mechanism,
although various authors have shown the reexpression of tumor
suppressors p16INK4a and p15INK4b andWIF1 upon treatment of tumor
cell lines with EGCG ([196] and references therein).

7. Xenomirs and metastable epialleles: double-edged swords for
nutrigenomic intervention

The safety of nutrigenomic intervention is widely accepted, mainly
because the accidental ingestion of physiologically toxic amounts of
polyphenols and other plant metabolites seems to be highly unlikely.
Nevertheless, physiologically safe levels of ingested nutrients and
metabolites could have undesired effects on epigenetic regulators
[197,198]. Of special concern are genes that harbor metastable
epialleles (MEs), i.e. alleles which generate phenotypical variation
through differential methylation, in their regulatory regions [199].
Metastable epialleles have been shown to promote the spreading of
methylation to neighboring genes, thus contributing to their untimely
epigenetic silencing [200]. Whatmakes regulatoryMEs interesting for
nutraceutical research is the potential modulation of expression of
their associated genes by environmental factors, with the degree of
DNA methylation at their promoters reflecting the maternal intake of
folic acid,as in the agouti and axin-fused genes [111,116]. This
environmental sensitivity makes ME-harboring genes likely targets
for nutraceutical intervention, as well as interesting candidates to
explain the long-term susceptibility to chronic diseases by linking
prenatal exposures (e.g. to maternal folate) to the developmental
plasticity of the epigenome [201]. In this context, Waterland et al.
described a number of human MEs and studied their dynamics in a
model of seasonal food shortage inGambian subsistence farmers. They
compared levels of methylation in MEs from individuals conceived in
scarce vs. affluent conditions, and found them to be significantly
increased in individuals conceived in the challenging season [202],
probably due to seasonal variations in the intake of methyl donors by
the pregnant mothers, although no data were provided on the
expression variations of the ME-associated genes [203,204]. To make
things more interesting, a recent report showed that genomic regions
flanking humanMEswere enriched in repetitive sequences of the long
interspersed nuclear element (LINE) or endogenous retrovirus (ERV)
families [205], a relevant result because murine MEs have also been
localized next to retroviruses and other transposable elements that
generate epigenetic variability or instability [206,207] or affect the
transcriptional pattern of the locus [208]. Other authors have detected
hypermethylated, leaky elements of the Alu [200] or B1 [209,210]
families that spreadmethylation to flanking regions and consequently
contributed to the silencing of contiguous genes. Clearly, more
research is needed on the function and dynamics of MEs, on their
associated genes, and on their role as spreaders of methylation and
gene-silencers; nonetheless, MEs could provide the degree of
phenotypic variability needed to explain some of the long-term
effects of early-life nutrition.

Another risky association between nutrition and the epigenetic
machinery deals with the recently described xenomiRs or xenomiR-
NAs, i.e., exogenous plant or animal-derivedmiRNAs [211]. In a highly
controversial report, Zhang et al. described that the plant-specific
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microRNA miR-168a could be acquired by animals through food
ingestion, survive the acidic conditions of stomach, target the low-
density lipoprotein receptor adapter protein 1 (LDLRAP1) mRNA, and
reduce the liver expression of LDLRAP1 protein [212]. Similarly, Baier et
al. reported that miR-29b andmiR-200c could be acquired by humans
through milk consumption, and that miR-29b could target the runt-
related transcription factor-2 (RUNX2) mRNA and miR-200c the ZEB1
mRNA in “in vitro” luciferase assays [213]. Furthermore, these authors
showed that depletion of these miRNAs from milk was not
compensated by intracellular synthesis, suggesting that humans
relied on continuous exogenous supply of miR-29b and miR-200c
[213]. Although these results have been openly questioned [214–217],
with some laboratories being unable to replicate them [218] and
others considering them as laboratory artifacts [219], the idea that
xenomiRs could regulate the expression of target genes in humans or
animals is fascinating (see [220] for a recent review), and could open a
conceptual gate for the direct use of miRNA-characterized diets in
nutritional interventions aimed to stop disease progression [221,222].
It is likely that the coming years will see enormous progress in this
highly controversial research area.

8. Conclusions and future trends

The epidemic of obesity that currently affects the western world
has generated great interest in identifying the molecular mechanisms
involved in the onset and progression of obesity and its related
conditions. Of special interest are the effects of prenatal nutrition on
the long-term risk of chronic diseases, as well as the genetic and
epigenetic mechanisms that regulate the expression of genes critical
for the appropriate development of adipogenic tissues. The present
review focused on recently published work on the interface between
nutrition and epigenetic mechanisms, i.e., how nutrients impact on
the covalent marks of DNA and histones that have a direct role in the
regulation of gene expression. Although this field of research is quite
young, enough data are available to draw a number of conclusions that
could serve as a theoretical basis for the development of further
investigations: i.- early-life malnutrition results in increased risk of
obesity and related conditions in adulthood, according to sound
epidemiological evidence from studies in historical cohorts; ii.-
nutrition has a direct impact on the expression of a number of
responsive genes, and the availability of specific nutrients, such as
methyl donors or folate, can modulate expression of certain genes
(e.g., the Agouti gene) by changing the degree of methylation of their
regulatory regions; iii-chromatin could be considered a metabolic/
nutrient sensor that responds to nutritional cues by changing the
patterns of gene expression. The post-translational addition of O-
GclNAc, whose intracellular levels reflect the metabolic status of the
cell, modulates gene expression by tagging histone proteins and
members of the polycomb group of proteins (PcG), among others.
Thus poor nutrition, leading to a metabolite shortage, could affect the
appropriate deployment of epigenetic tags and, subsequently, the
growth and development of critical organs and tissues.

A general overview of this topic would highlight evidence that
early environmental exposures (such as nutrition) can affect (i.e.
reprogram) the developmental plasticity of key tissues and organs by
affecting epigenetic mechanisms that control gene expression.
Nevertheless, this explanation remains a theoretical structure because
we still lack a mechanistic view of the processes involved. The many
unknowns include the genes affected, the number and nature of their
nutrient-sensitive regulatory regions, the epigenetic regulators in-
volved, the gene-modulating role of specific nutrients and metabo-
lites, aa well as the developmental alterations generated in the critical
tissues and organs. On the other hand, the promising insights into the
regulating roles of xenomiRNAs or of the metastable epialleles in
nutrition-dependent changes make them worthy of study because of
their ground-breaking potential as regulatory mechanisms, as well as
their yet unforeseen physiological impacts.

Thesewill definitely be futurefields of active research because they
correspond to the primary questions raised by the data here reviewed.
Nevertheless, we would pose other, perhaps more philosophical,
questions. It would be very important to describe the molecular
mechanisms by which the cellular memory of the initial nutritional
insult is established in early life and propagated to adulthood, i.e., to
understand why the predisposition “awakens” 40–50 years later. We
could hypothesize a requirement for a second signal, or the interaction
of nutritionally primed epigenetic mediators with the aging machin-
ery of the cell. In addition, it is tempting to speculate that nutrition-
derived reductions in prenatal nutritional/metabolic sensors (such as
the methyl donors or UDP-GlcNAc,among others) could somehow
affect the activity of critical, as yet unknown, regulatory regions or
epigenetic regulators, leading to a gradual loss of epigenetic tags and/
or other signals important for the maintenance of gene expression
homeostasis. The affected cells would thus enter a state of gradual
“regulatory exhaustion” that would hinder their physiological
stability.

It is clear that a deep knowledge of the genetic and epigenetic
mechanisms involved in nutrition-dependent reprogramming would
likely provide us with tools for primary prevention as well as to
reverse the process and, hopefully, its effects on long-term disease
susceptibility. Of course, much more research is needed to fulfill this
objective, and it is likely that the coming years will see a dramatic
advance in research on the nutrition-dependent alterations in gene
expression and the associated increases in disease risk.
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