
J Pediatr Endocr Met 2015; aop

  *Corresponding author: Ayhan Abac ı ,  Department of Pediatric 

Endocrinology, Dokuz Eylul University, Balcova, Izmir, Turkey, 

Phone:  + 90-23-2412-6076, Fax:  + 90-23-2412-6005, 

E-mail:  ayhanabaci@gmail.com  

  Ahmet An ı k, G ö n ü l  Ç atl ı  and Ece B ö ber:     Department of Pediatric 

Endocrinology, Dokuz Eylul University, Balcova, Izmir, Turkey 

       Review article   

    Ahmet   An ı k   ,     G ö n ü l    Ç atl ı    ,     Ayhan   Abac ı     *  and     Ece   B ö ber     

  Maturity-onset diabetes of the young (MODY): 
an update   
  Abstract:   Maturity-onset diabetes of the young (MODY) is 

a group of monogenic disorders characterized by autoso-

mal dominantly inherited non-insulin dependent form of 

diabetes classically presenting in adolescence or young 

adults before the age of 25 years. MODY is a rare cause of 

diabetes (1% of all cases) and is frequently misdiagnosed 

as Type 1 diabetes (T1DM) or Type 2 diabetes (T2DM). A 

precise molecular diagnosis is essential because it leads 

to optimal treatment of the patients and allows early 

diagnosis for their asymptomatic family members. Muta-

tions in the glucokinase ( GCK)  (MODY 2) and hepatocyte 

nuclear factor ( HNF)1A/4A  (MODY 3 and MODY 1) genes 

are the most common causes of MODY.  GCK  mutations 

cause a mild, asymptomatic, and stable fasting hypergly-

cemia usually requiring no specific treatment. However, 

mutations in the  HNF1A  and  HNF4A  cause a progressive 

pancreatic  β -cell dysfunction and hyperglycemia that can 

result in microvascular complications. Sulfonylureas are 

effective in these patients by acting on adenosine triphos-

phate (ATP)-sensitive potassium channels, although 

insulin therapy may be required later in life. Mutations in 

the  HNF1B  (MODY 5) is associated with pancreatic agen-

esis, renal abnormalities, genital tract malformations, and 

liver dysfunction. Compared to MODY 1, 2, 3, and 5, the 

remaining subtypes of MODY have a much lower preva-

lence. In this review, we summarize the main clinical and 

laboratory characteristics of the common and rarer causes 

of MODY.  
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   Introduction 

 Maturity-onset diabetes of the young (MODY) is an auto-

somal dominantly inherited type of diabetes that results 

from heterozygous mutations in various transcription 

factors acting in the development and maturation of 

pancreatic  β -cells  (1) . In addition, mutations in enzymes 

involved in glucose sensing of the  β -cell have also been 

shown to result in early-onset diabetes  (2) . Characteristic 

features of MODY are autosomal inheritance, early onset 

of diabetes (with diagnosis generally before the age of 

25 years), no signs related to the autoimmune process 

or insulin resistance, and preservation of endogenous 

insulin secretion  (3, 4) . 

  History and prevalence 

 In 1974, Tattersall et  al.  (5)  reported on a family with 

dominantly inherited, mild diabetes mellitus. The group 

defined the molecular and clinical characteristics of the 

disease, using the name of  “ maturity-onset – type diabe-

tes of young people (MODY) ”  for the first time  (6) . The 

molecular genetics of this disease were first defined in 

the 1990s, with mutations in the genes encoding glucoki-

nase (GCK) (1992), hepatocyte nuclear factor (HNF) 4 α  and 

HNF1 α  (1996), insulin promoter factor (1997), and HNF1 β  

(1997) shown, for the first time, to cause MODY  (1) . With 

the more recent identification of novel genes, more than 

10 genes are currently known to cause MODY  (7) . 

 MODY is reported to be the most common form of 

monogenic diabetes and affects 1 – 2% of all diabetic 

patients in Europe  (8) . Recent studies have reported 

a MODY prevalence of 21 – 45/1,000,000 children and 

100/1,000,000 adults  (9 – 11) . It has been determined that 

5% of individuals diagnosed with diabetes before the age 

of 45 years have MODY, with 80% of individuals misdiag-

nosed as having type 1 (T1DM) or type 2 diabetes mellitus 

(T2DM)  (12) . In addition, a childhood study reported that 

36% and 51% of individuals misdiagnosed with T1DM and 

T2DM, respectively, actually had MODY  (11) .  
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  Genetics 

 Mutations in many genes with a role in pancreatic  β -cell 

development or insulin secretion can cause MODY. Genes 

that are known to cause MODY are those encoding  (13 – 18) :

 –     HNF4A  (MODY 1)  

 –   glucokinase [ GCK  (MODY 2)]  

 –   HNF1 α  [ HNF1A  (MODY 3)]  

 –   pancreatic and duodenal homeobox 1 [ PDX1/IPF  

(MODY 4)]  

 –   HNF1 β  [ HNF1B  (MODY 5)]  

 –   neurogenic differentiation 1 [ NEUROD1  (MODY 6)]  

 –   Kr ü ppel-like factor 11 [ KLF11  (MODY 7)]  

 –   carboxyl ester lipase [ CEL  (MODY 8)]  

 –   paired box gene 4 [ PAX4  (MODY 9)]  

 –   insulin [ INS  (MODY 10)]  

 –   B-lymphocyte kinase [ BLK  (MODY 11)]  

 –   ATP -binding cassette, subfamily C, member 8 [ ABCC8  

(MODY 12)]  

 –   potassium channel, inwardly rectifying, subfamily J, 

member 11 [ KCNJ11  (MODY 13)].    

 Novel MODY-causing genes are still being defined, and 

their roles in the pathogenesis of diabetes are being inves-

tigated  (19) . It is believed that many MODY-related genes 

have not yet been identified  (20) . 

 Mutations in the  GCK ,  HNF1A ,  HNF4A , and  HNF1B  

genes are the most common causes of MODY in the UK, 

and they represent 32%, 52%, 10%, and 6% of MODY cases, 

respectively  (13) . However, the causes of MODY can differ 

between countries, with these differences potentially 

related to the use of screening programs, which also detect 

asymptomatic individuals.  GCK  mutations have been 

reported to be the most common cause of MODY in Spain, 

France, and Italy, where routine blood glucose screening 

is performed, whereas in countries where routine blood 

glucose tests are seldom done,  HNF1A -MODY is more com-

monly diagnosed  (7) . In addition, the age of the enrolled 

individuals might affect the mutation distribution. While 

 GCK  mutations were rare (12%) in a Norwegian cohort, 

which included adults, they were more common (41 – 63%) 

in two large studies conducted with children in Italy  (2) . 

 Genes causing MODY and their clinical characteristics 

are summarized in  Table 1  .  

  Specific subtypes and their properties 

   GCK -MODY (MODY 2) 

 Glucokinase, which serves as a key regulating enzyme 

in insulin secretion stimulated by glucose, acts as the 

 Table 1      MODY subtypes: gene mutations, pathophysiology, and clinical characteristics.  

MODY    Gene    Pathophysiology    Clinical characteristics  

 1    HNF4A    Transcription factor; decreased insulin secretion  Rare (5%); neonatal hyperinsulinemia, low triglycerides, tendency 

for microvascular complications, sensitivity to sulfonylureas

 2    GCK   Decreased glucose sensitivity due to 

phosphorylation defect; decreased glycogen 

storage

  Common (30 – 50%); increased fasting glucose, increased likelihood 

of glucose   <  55 mg/dL on oral glucose tolerance test; mild diabetes 

that generally does not require anti-diabetes medication

 3    HNF1A    Transcription factor; decreased insulin 

secretion, progressive  β -cell damage

  Common (30 – 50%), high penetrance; glycosuria, microvascular 

complications, sensitivity to sulfonylurea

 4    PDX1/IPF1   Impaired pancreas development; homozygotes 

experience pancreas agenesis

  Rare (1%); mean age at diagnosis 35 years, requires oral anti-

diabetes treatment (and insulin)

 5    HNF1B   Transcription factor; decreased insulin secretion  Rare (5%); extra pancreatic signs (renal cysts or dysplasia, genital 

abnormalities in females, azoospermia in males) with diabetes; 

variable phenotype; requires insulin treatment

 6    NEUROD1   Abnormal development of  β -cell functions   Very rare (  <  1%); adult-onset diabetes

 7    KLF11    Tumor-suppressor gene; decreased glucose 

sensitivity of  β -cells

  Very rare (  <  1%); phenotype resembling type 2 diabetes

 8    CEL   Decreased endocrine and exocrine pancreas 

functions (pathophysiology ? )

  Very rare (  <  1%); typically autosomal dominant diabetes

 9    PAX4    Transcription factor affecting apoptosis and 

proliferation of  β -cells

  Very rare (  <  1%); possible ketoacidosis

 10    INS    Heterozygous mutation of the insulin gene   Very rare (  <  1%); diabetes onset before 20 years of age; sulfonylurea 

or insulin treatment is generally required

 11    BLK    Heterozygous mutation affecting insulin secretion  Very rare (  <  1%); increased penetrance with higher body mass indexes

 12    ABCC8    ATP-sensitive potassium channels dysfunction   Very rare (  <  1%); clinical phenotype is similar to  HNF1A/4A -MODY

 13      KCNJ11      ATP-sensitive potassium channels dysfunction    Very rare (  <  1%); clinical phenotype is heterogenous  
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glucose sensor of pancreatic  β -cells  (2) . To date, 620 muta-

tions (missense, nonsense, frameshift, splice site, and 

promoter mutations and deletions) in 1441 families have 

been reported in the  GCK  gene, causing hypoglycemia and 

hyperglycemia  (2) . 

 Heterozygote-inactivating mutations of the  GCK  

gene cause mild, subclinical hyperglycemia, which is 

generally present at birth and does not progress  (2) . The 

decrease in  GCK  activity in pancreatic  β -cells caused by 

 GCK  mutations lead to decreased glucose phosphoryla-

tion and glucose sensitivity in  β -cells, and a shift in the 

dose-response relationship between plasma glucose con-

centrations and insulin secretion to the right  (21) . A mild 

increase in fasting blood glucose is observed because 

of decreased hepatic glycogen synthesis and increased 

hepatic glucose production as a result of  GCK  mutations 

expressed in the liver  (22) . Although various mutations are 

observed in individuals with  GCK -MODY, their phenotypic 

characteristics can show many similarities as unaffected 

alleles compensate for the mutations  (2) . As the result 

of an upward change in the required glucose concen-

tration threshold to stimulate insulin secretion, fasting 

glucose levels show a mild increase (96 – 140  mg/dL) 

from birth  (2) . 

 Individuals with  GCK -MODY are generally asymp-

tomatic, so many are first diagnosed when their blood 

glucose levels are measured. It has been reported that 

40 – 50% of children with asymptomatic or coincidental 

hyperglycemia have  GCK -MODY  (23, 24) . These children 

are generally diagnosed during routine investigations 

or from blood glucose measurements performed to 

investigate another complaint  (7) . Children with  GCK -

MODY generally have a family history of T2DM or gesta-

tional diabetes history in their parents or grandparents. 

Because the mild hyperglycemia causes no symptoms, 

the parents of these children might not be known to 

have diabetes and, if mutation carriers, may be simi-

larly diagnosed with mild fasting hyperglycemia and 

 GCK -MODY  (22, 25) . Another laboratory characteristic 

that helps to differentiate  GCK -MODY from other MODY 

subtypes is small increased glucose levels on an oral 

glucose tolerance test (OGTT) at minute 120. Overall, 

70% of individuals with  GCK -MODY have glucose levels 

below 54 mg/dL at this point, while 95% have levels 

below 83 mg/dL  (26) . Although not very common, 

individuals with glucose levels above 100  mg/dL at 

minute 120 have also been reported  (27) . It has been 

suggested that differences in blood glucose values 

measured by OGTT at minute 120 might be related to 

variations in insulin sensitivity among individuals with 

 GCK -MODY  (28) . 

 Microvascular complications are rare in individu-

als with  GCK -MODY, because the hyperglycemia is mild, 

and there is no marked progression  (29, 30) . In a study 

performed in France, it was reported that proliferative 

retinopathy, proteinuria, and peripheral neuropathy 

developed in 4 – 6% of these individuals  (29) . Furthermore, 

treatment with insulin or oral hypoglycemic agents might 

not result in a decrease in glycated hemoglobin (HbA 
1c

 ) 

levels  (30) . As hyperglycemia is developed due to defects 

in the recognition of glucose, the exogenous administra-

tion of low-dose insulin in these individuals results in 

decreased endogenous insulin secretion in compensation, 

and blood glucose levels remain unchanged. Decreases in 

blood glucose levels have been observed only when sup-

raphysiological doses of insulin are given  (30) . Therefore, 

molecular confirmation of the diagnosis in these individu-

als will prevent unnecessary pharmacological treatments. 

Although there are no long-term data regarding macrovas-

cular complications, it is believed that cardiovascular risk 

is increased in individuals with  GCK -MODY  (31) . It has also 

been reported that these individuals can develop insulin 

resistance in the long term, which might negatively affect 

metabolic control  (32) . 

 The birth weight of a baby with  GCK -MODY is related 

to the  GCK -MODY status of both the child and its parents 

 (33) . If both the baby and the mother carry  GCK  mutations, 

then the increase in maternal blood glucose will lead to 

normal insulin in the baby; thus, the baby ’ s birth weight 

will be within the normal range. If there is no mutation 

in the baby, then maternal hyperglycemia will cause an 

increase in insulin secretion in the child, which will lead 

to an approximately 500 g increase in the birth weight. On 

the other hand, if the baby has a  GCK  mutation inherited 

from the father, and the mother does not have the muta-

tion, then insulin synthesis in the baby will be decreased, 

resulting in an approximately 500 g decrease in birth 

weight  (33) .  

   HNF1A -MODY (MODY 3) 

 To date, a total of 414 different mutations have been 

defined in 1247 families carrying the  HNF1A  gene  (34) . 

Although mutations can be observed in all exons, they are 

most often detected in exons 2 and 4. The most commonly 

reported mutations are missense mutations (55%), fol-

lowed by frameshift (22%), splice site (9%), and promoter-

region mutations (2%) and deletions (1.2%)  (34) .  HNF1A  

is expressed in pancreatic  β -cells, the liver, and intes-

tines, and  HNF1A  is a critical transcription factor for  INS  

and  GLUT2  (encoding a glucose carrier) in mature  β -cells 
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 (35, 36) .  Hnf1a -knockout mice have been shown to develop 

diabetes as a result of decreased insulin secretion  (37) . 

  HNF1A  mutations are the most common causes 

of MODY in Europe, North America, and Asia  (38) . A 

C-nucleotide insertion in exon 4 (Pro291fsinsC) is the 

most widespread of up to 200 reported mutations  (34) . 

Heterozygous  HNF1A  mutations can cause diabetes with 

early-adulthood onset, via progressive  β -cell dysfunc-

tion  (39) . A recent study reported that  β -cell apoptosis 

was increased in individuals with  HNF1A  mutations, 

which stimulated the expression of the pancreatic stone 

protein/regenerating gene (PSP/reg) in surviving neigh-

bor cells, with PSP/reg1A protein subsequently secreted 

from these cells  (40) . The genetic penetrance of  HNF1A  

mutations is high, and 63% of individuals up to 25 years 

of age and 96% of those up to 55 years develop diabetes 

 (34, 41) . A correlation between mutation region and clini-

cal phenotype has been reported, with individuals with 

exon 4 – 6 mutations showing signs of diabetes 8  years 

earlier (mean age 17 years) than those with exon 7 – 10 

mutations  (41) . 

 The mean age of  HNF1A -MODY diagnosis in children 

is 14  years (range 4 – 18 years), and it is rarely identified 

in children younger than 10  years  (42) . Although blood 

glucose is normal in the period before the appearance of 

diabetes,  β -cell dysfunction can be observed  (43) . It has 

been shown that the insulinogenic index of individu-

als with an  HNF1A  mutation is lower than that of people 

without the mutation, with increased insulin sensitivity in 

the former group  (43) . In the early phase of diabetes, these 

individuals are not dependent on exogenous insulin. 

When children with good metabolic control with low-dose 

insulin do not receive insulin, ketoacidosis is generally 

not observed  (25) . 

 In the early phases of the disease, an OGTT will show 

a marked increase in glucose (generally   >  90  mg/dL) 

at hour 2  (44) .  HNF1A  has a role in glucose reabsorption 

via sodium glucose transporter-2 in the proximal renal 

tubules, meaning that glycosuria is observed in the period 

before the development of diabetes as a result of decreased 

renal glucose reabsorption in individuals carrying  HNF1A  

mutations  (45) . 

 As severe hyperglycemia may be observed at the onset 

of diabetes, and the hyperglycemia severity increases over 

time, the risks of micro- and macrovascular complications 

in these patients are similar to those seen with T1DM and 

T2DM  (46) . Therefore, tight glycemic control and close 

follow-up for potential complications are necessary. It is 

believed that  HNF1A  mutations have no effect on the birth 

weight of children because in utero  β -cell functions are 

normal  (13) .  

   HNF4A -MODY (MODY 1) 

  HNF4A , which is expressed mainly in the liver but also in 

the pancreas and kidneys, is a transcription factor that 

affects glucose metabolism through various pathways 

 (47) .  HNF4A  mutations constitute 10% of MODY cases, 

and more than 103 mutations have so far been defined in 

173 families  (34) . The phenotype of heterozygote  HNF4A  

mutations resembles that of  HNF1A -MODY. In one study, 

10 – 29% of individuals with suspected  HNF1A -MODY were 

found to actually have  HNF4A  mutations, and the authors 

have suggested that sequencing of  HNF4A  should be per-

formed in patients with clinical characteristics of  HNF1A -

MODY in whom mutations in  HNF1A  are not found  (48) . 

 Heterozygous mutations can cause significant fetal 

macrosomia (mean increase in body weight of 790 g) 

by increasing in utero insulin secretion, which can lead 

to transient or elongated neonatal hypoglycemia of 

unknown origin  (49) . The timing and cause of conversion 

from neonatal hyperinsulinemia to diabetes are unknown 

 (1) . Other differences between  HNF4A -MODY and  HNF1A -

MODY are an absence of glycosuria and low apolipopro-

teins (apoAII, apoCIII, and apoB) in individuals with the 

former condition  (50) .  

   PDX1 -MODY (MODY 4) 

 Pancreatic and duodenal homeobox 1 (encoded by  PDX1 ), 
also known as insulin promoter factor 1 ( IPF1 ), is a tran-

scription factor that acts in pancreas development and 

gene transcriptions in the pancreas, including for insulin, 

glucose transporter-2, and glucokinase  (51) . Homozygote 

frameshift mutations or compound heterozygous muta-

tions causing a premature stop codon can cause perma-

nent neonatal diabetes as a result of pancreas agenesis 

 (52) . Heterozygous mutations of  PDX1  are related to MODY 

or early-onset T2DM development  (53, 54) .  PDX1 -MODY 

was first defined in 1997 and is a very rare cause of MODY 

 (55) . It was shown that the heterozygous Pro63fsX60 

mutation, which was defined in five generations of a U.S. 

family, caused intermittent diabetes and MODY  (56) . The 

authors reported that the most noteworthy characteristics 

in these individuals were obesity before 12  years of age 

and hyperinsulinemia, and suggested that obesity might 

be observed in other types of MODY and was a general 

phenomenon of this condition  (56) . Individuals with 

 PDX1 -MODY should be followed up for cardiovascular 

complications and microvascular complications such as 

retinopathy and nephropathy, which are related to severe 

hyperglycemia  (54 – 56) .  
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   HNF1B -MODY (MODY 5) 

  HNF1B  is expressed in the early phase of embryonic 

development in the pancreas, kidneys, liver, and genital 

tract, and developmental abnormalities may therefore 

be encountered in all of these organs in individuals with 

 HNF1B  mutations  (57) . Renal diseases are most typically 

seen; the most commonly observed renal abnormality is 

renal cystic disease, followed by collecting-system abnor-

malities  (58) . Genitourinary abnormalities, pancreatic 

dysplasia, liver and gallbladder dysfunction, gout, and 

hyperuricemia are other accompanying problems  (59, 

60) . To date, more than 65 heterozygous mutations have 

been reported in this gene, shown to cause MODY  (58) . 

Exon or complete gene deletion is observed in approxi-

mately half of individuals  (58) . Unlike the other MODY 

subtypes  –  such as  HNF1A - and  HNF4A -MODY—where the 

prominent feature is  β -cell dysfunction, the diabetes that 

develops in approximately half of  HNF1B  mutation carri-

ers is the result of both insulin resistance and  β -cell dys-

function  (26, 59) . End-stage renal failure without diabetic 

nephropathy is observed at the age of 45 years in half of 

these individuals, and renal signs may be encountered 

before the appearance of diabetes  (61) ; therefore,  HNF1B-
 MODY should be considered in individuals with diabetic 

and non-diabetic nephropathy  (42) . Moreover, it has been 

reported that a family history might be absent in these 

individuals because spontaneous de novo mutations are 

encountered relatively frequently, and a positive family 

history should therefore not be required for molecular 

diagnosis  (62) . 

 Birth weights in heterozygous  HNF1B  individuals who 

developed early-adulthood diabetes have been reported to 

be approximately 900 g lower than normal  (63) . Individu-

als with  HNF1B -MODY do not respond well to sulfonyl-

ureas, and they generally require early insulin therapy 

 (26) . Microvascular complications have also been reported 

in these patients  (64, 65) .  

   NEUROD1 -MODY (MODY 6) 

  NEUROD1  is a regulating gene in the development of the 

pancreas and  INS  expression. It regulates  INS  expression 

by binding to a complex promoter that is formed after 

dimerization with protein E47  (66) . It has been shown that 

heterozygous mutations of this gene  –  very rare muta-

tions of which can result in permanent neonatal diabetes, 

cerebellar hypoplasia, and vision, hearing, and learning 

problems  –  might cause MODY in a small number of fami-

lies  (67, 68) . 

 Individuals with  NEUROD1 -MODY may develop diabe-

tes as children or adults  (69) . Another noteworthy feature 

of these individuals is that a majority are obese. It is not 

thought that obesity is related to  NEUROD1  mutations in 

these individuals but that obesity in mutation carriers 

might facilitate diabetes development  (69, 70) .  

   KLF11 -MODY (MODY 7) 

  KLF11  is expressed in pancreatic islet cells and  β -cells. 

Similar to expression in exocrine cells,  KLF11  mRNA 

expression in  β -cells may be upregulated by trans-

forming growth factor- β   (40) . In addition, high glucose 

levels increase  KLF11  mRNA expression in  β -cells. It has 

been shown that in the presence of high glucose levels, 

 KLF11  can bind to and activate the insulin promoter in 

 β -cells. These findings indicate that glucose-induced 

 KLF11  might increase insulin expression in pancreatic 

 β -cells. Moreover,  KLF11  regulates  PDX1  transcription in 

pancreatic  β -cells  (71) . Neve et al.  (72)  first defined two 

rare variants of the  KLF11  gene, which decreased its tran-

scriptional activity, in three families with a history of 

early-onset T2DM.  

   CEL -MODY (MODY 8) 

 The  CEL  gene is mainly expressed in mammary glands and 

pancreatic acinar tissue, but it is not expressed in  β -cells 

 (73) . The carboxyl ester lipase enzyme, which is known as 

a bile-salt-dependent/responsive lipase, is activated after 

it is secreted into the intestines by bile salts. It acts in the 

hydrolysis and absorption of cholesterol and fat-soluble 

vitamins.  CEL -MODY was first defined by Raeder et  al. 

 (74)  as an autosomal dominantly inherited disease, char-

acterized by exocrine pancreatic dysfunction during the 

childhood and diabetes mellitus in adulthood. The patho-

genesis of pancreatic lipomatosis and exocrine pancreatic 

dysfunction observed in the early phases of  CEL -MODY is 

unknown  (73) .  

   PAX4 -MODY (MODY 9) 

 Paired box gene 4 (encoded by  PAX4 ) is a transcription 

factor that acts in  β -cell development  (75) .  PAX4  is first 

expressed in endocrine promoter cells in the early phase 

of embryonic life and is then selectively expressed in  β -

cells later in life  (76) .  PAX4  is required for the expression of 

 PDX1  and Nkx 6.1, which are essential for the development 
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of pancreatic  β -cells  (75) . Moreover,  PAX4  acts in regen-

erating  β -cells in adulthood  (14) . A study looking at the 

 PAX4  gene in 46 individuals with MODY in the Far East 

determined that R164W and IVS7-1 G  >  A mutations were 

related to MODY  (14) .  

   INS -MODY (MODY 10) 

 While  INS  mutations generally cause neonatal diabetes, 

they are also rare causes of diabetes in older children 

and adults  (77) . A small number of heterozygous muta-

tions showing co-segregation with diabetes and related to 

MODY have been defined  (26) . It has been predicted that 

these mutations decrease the folding of proinsulin mol-

ecules or cause stress and  β -cell apoptosis in the endo-

plasmic reticulum via endoplasmic reticulum protein 

retention  (77) . Thus far, although the same mutations have 

been detected in individuals from the same family, clini-

cal signs and diabetes severity have significantly varied 

among all individuals with  INS  gene mutations related 

to MODY  (78, 79) . In addition to individuals with polyu-

ria, polydipsia, and weight loss, others with mild clinical 

signs have also been reported. Diabetes has been reported 

to develop after 50 years of age in family members of indi-

viduals who were diagnosed between 9 and 44 years, and 

carrying the same mutation  (80) . While some individuals 

can have good metabolic control for years with oral anti-

diabetes medication, others might require insulin treat-

ment  (79, 80) .  

   BLK -MODY (MODY 11) 

  BLK  encodes a nonreceptor tyrosine kinase of proto-

oncogenes of the Src family, which act in cellular mul-

tiplication and differentiation, and are present in many 

cells and tissues, mainly in pancreatic  β -cells  (16) . In 

addition, the  BLK  gene acts on insulin synthesis and 

secretion by increasing the expressions of  PDX1  and 

Nkx 6.1, which are essential for the development of pan-

creatic  β -cells  (16) . Borowiec et  al.  (16)  identified five 

different  BLK  mutations related to MODY in three fami-

lies. In a recent study investigating the A71T mutation 

in 64 individuals with MODY of unknown cause, 4901 

T2DM patients, and 4280 normoglycemic controls, this 

mutation was not detected in the MODY group but was 

detected in 52 subjects in the normoglycemic control 

group. It was also reported that this mutation might be 

weakly  “ diabetogenic ”  in the presence of obesity in the 

T2DM group  (81) .  

   ABCC8 -MODY (MODY 12) 

 In a recent study including 85 patients with a similar phe-

notype to MODY1 or MODY3 but no mutations in  HNF1A  or 

 HNF4A , it was reported that 8% (n  =  7) had mutations in 

the  ABCC8  gene  (17) .  

   KCNJ11 -MODY (MODY 13) 

 In the literature, only 1 MODYX family is reported to have a 

p.Glu227Lys mutation in the  KCNJ11  gene  (18) . 

 Although more than 10 MODY-causing genes have 

been identified since the condition was first defined, the 

genetic cause is undetermined in 15 – 65% of individuals 

with MODY (MODYX).    

  Differential diagnosis and 
 significance of a genetic 
diagnosis 
 A correct diagnosis and differentiating MODY from T1DM 

and T2DM are important when deciding on a patient ’ s 

treatment and determining his or her prognosis, as well 

as detecting at-risk family members  (31, 82, 83) . A study 

conducted in the United Kingdom reported that patients 

experienced a delay of 13 years in receiving a MODY diag-

nosis from diabetes initiation  (9) . Furthermore, it has been 

estimated that approximately 80% of individuals with 

MODY are incorrectly diagnosed with T1DM and T2DM at 

presentation  (9) . A recent study conducted in the United 

States with children diagnosed with MODY by molecular 

methods reported that, before the genetic diagnosis, 36% 

received treatment for T1DM, 51% received treatment for 

T2DM, and 24% received treatment for MODY (sulfonyl-

urea or anti-diabetes therapy)  (11) . This indicates that a 

diagnosis of MODY is seldom considered by many primary 

care physicians  (7) . 

 Pihoker et al.  (11)  reported that of 47 individuals with 

a MODY diagnosis ( GCK ,  HNF1A , or  HNF4A ) confirmed by 

molecular methods, 44% presented with a complaint of 

weight loss, and 82% presented with polyuria and poly-

dipsia, while 23% developed diabetic ketoacidosis with 

6  months of diagnosis. Other studies have reported that 

the  HNF1A  mutation was identified by molecular methods 

in 5 – 10% of individuals who were diagnosed clinically 

with T1DM and who had a family history of diabetes and 

inconsistent signs of T1DM (absence of a high-risk tissue 
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group, autoantibody negativity, and/or a history of dia-

betes in three generations)  (84 – 86) . While anti-glutamic 

acid decarboxylase antibodies and/or anti-islet antigen 

2 antibodies are detected in 87 – 94% of newly diagnosed 

T1DM patients, positivity of these antibodies has been 

reported to be similar to that of the normal population 

(  <  1%) in individuals with molecularly confirmed MODY 

 (3, 87, 88) . It should be noted that, in rare cases, T1DM and 

MODY can coexist in a single patient  (89 – 91) . 

 As the prevalence of T2DM in children increases, it is 

becoming more difficult to differentiate early-onset T2DM 

from MODY using the classic diagnostic features of MODY 

(i.e., age at onset and family history). It has been reported 

that one-third of individuals with  HNF1A -MODY could not 

be differentiated from those with T2DM by this method 

 (92) . It is accepted that the absence of clinical signs such 

as obesity and the metabolic syndrome in patients with 

early-onset diabetes favors a diagnosis of MODY over T2DM 

 (34) . However, although it has been reported that obesity 

is typically rare in MODY individuals, the obesity epidemic 

among adolescents and young adults means that obesity is 

being more frequently reported in individuals with MODY. 

In one study conducted in the United Kingdom and France, 

8 – 9% of individuals younger than 30  years with  HNF1A -

MODY who were referred for genetic analysis were obese 

 (34) . Similarly, although it was previously reported that 

the prevalence of acanthosis nigricans is very low among 

individuals with MODY, a recent study performed with 

pediatric-age MODY sufferers observed acanthosis nigri-

cans in 40% of molecularly confirmed cases  (11, 25) . There-

fore, in diabetic children who have non-obese first degree 

relatives with early onset diabetes and who are responsive 

to sulfonylureas, MODY should be considered and molecu-

lar analysis should be performed even in the presence of 

obesity and acanthosis nigricans  (34) . The clinical features 

of T1DM, T2DM, and MODY in children and adolescents are 

summarized in  Table 2    (7, 21, 93) . 

 Although MODY constitutes 1 – 2% of all diabetes 

cases, molecular confirmation of MODY is quite sig-

nificant for the individual and his or her family. First, 

a correct diagnosis enables optimal treatment of the 

disease. In a patient who is being treated as having T1DM 

and receiving insulin therapy, switching to oral treatment 

(i.e., a sulfonylurea) after a diagnosis of  HNF1A -MODY or 

 HNF4A -MODY will not only improve the patient ’ s quality 

of life but also result in marked improvements in glyce-

mic control  (82, 92) . Second, molecular confirmation of 

MODY enables an estimate of the individual ’ s prognosis. 

In an adolescent with mild hyperglycemia, a diagnosis of 

 GCK- MODY,  HNF1A- MODY, or T1DM will result in differ-

ent strategies for treatment and follow-up  (30, 46) . Third, 

molecular confirmation may prompt the recognition of 

accompanying abnormalities, such as pancreatic and 

genitourinary abnormalities in individuals with  HNF1B -

MODY and exocrine pancreatic dysfunction in those with 

 CEL -MODY  (22) . Finally, by diagnosing MODY, family 

members can be screened for carrier status and incorrect 

diagnoses prevented. It is recommended that all diabetic 

family members should undergo genetic screening, while 

unaffected family members should receive genetic coun-

seling about the benefits and potential consequences of 

molecular diagnosis  (13, 94) .  Figure 1   shows diagnostic 

and treatment algorithm for MODY.  

  Diagnosis of MODY 
 Direct sequencing can diagnose MODY with up to 100% 

sensitivity  (13) . Testing is often necessary for the following 

reasons: the clinical signs of MODY overlap with those of 

T1DM and T2DM, individuals diagnosed with MODY and 

T1DM are generally lean at the time of diagnosis; those 

with MODY do not generally require insulin treatment, 

 Table 2      Clinical features of T1DM, T2DM, and MODY in children and adolescents.  

Feature    MODY    T1DM    T2DM  

Age at diagnosis (generally) (years)     <  25   5 – 20     >  10

Patients with a family history of diabetes (%)   60 – 95     <  10   90

Inheritance   Autosomal dominant   Polygenic   Polygenic

Obesity   Similar to general population  Similar to general population  Common

Insulin resistance /acanthosis nigricans/metabolic syndrome   Rare   Rare   Common

Polyuria, polydipsia   Variable   Common   Variable

Diabetic ketoacidosis   Rare   Common   Rare

Patients with  β -cell antibodies (glutamic acid decarboxylase), %    <  1   87 – 94   11 – 30

C-peptide levels   Normal   Undetermined   High-normal

Optimal treatment    Sulfonylurea (MODY 1, 3, 4)    Insulin    Metformin  
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insulin secretion continues for a long time after diagnosis, 

and  β -cell autoimmunity is absent. Moreover, it has been 

shown that the specificity of the typical diagnostic crite-

ria (diagnosis at age   <  25 years, family history of diabetes, 

and absence of insulin dependence) is high but sensitiv-

ity is low, and fewer than half of individuals satisfy these 

criteria  (9, 94) . However, performing genetic tests in indi-

viduals without specific criteria can lead to inappropriate 

results and is not cost-effective, presenting a problem for 

the diagnosis of MODY. 

 Various algorithms using various clinical and labora-

tory parameters have been developed to define individual 

candidates for molecular diagnosis  (12, 94) . According to 

the model developed by Shields et al.  (94) , they reported 

that age younger than 30 years was the most differentiat-

ing feature between a diagnosis of MODY and T2DM and 

that the possibility of a MODY diagnosis was increased 

in previously diagnosed T1DM patients by 23-fold if there 

was family history of diabetes. This model uses age at the 

diagnosis, sex, treatment with insulin or an oral hypogly-

cemic agent, time to insulin treatment, body mass index, 

HbA 
1c

  level, family history of diabetes, and current age of 

the individual to calculate the probability of MODY  (94) . 

 Thanabalasingham et al.  (12)  recommended molecu-

lar testing for all diabetic patients diagnosed before the 

age of 30  years with residual insulin secretion at least 

3 years after diagnosis (i.e., a detectable C-peptide level), 

regardless of the patient ’ s family history, autoimmune 

condition, and insulin resistance. They also showed that 

adding the presence of a C-peptide response and absence 

of the metabolic syndrome to the classic MODY criteria 

increased the diagnostic sensitivity by two-fold. In a study 

by Pihoker et al.  (11)  involving 586 children suspected of 

having MODY, mutations were identified in 47 individu-

als. Half of the children whose MODY diagnosis was con-

firmed by molecular methods did not have a parent with 

a history of diabetes. In addition, in a cohort from Slova-

kia and the Czech Republic, de novo mutations in  GCK , 

 HNF1A , or  HNF4A  were recently reported in 7.3% of MODY 

individuals without family history of diabetes and 1.2% of 

all individuals with MODY  (95) . 

 The expense of and difficulties in accessing molecu-

lar tests mean that many studies have been performed 

to determine nongenetic markers that might identify 

appropriate candidates for molecular investigation. An 

ideal marker should be cheap, easily accessible, and 

GCK analysis 

GCK-MODY

DM in at least 1 individual < 25 years in at least 2 generations or  

Negative autoantibodies (ICA and GAD) or

Persistent stimulated  C-peptide response (>200 pmol/L) or

Findings not compatible with T2DM (absence of acanthosis nigricans or

dyslipidemia)

Stable fasting hyperglycemia 

No microvascular complications  

Increase in OGTT < 90 mg/dL 

HbA1c < %7.5
Progressive hyperglycemia 

Increase in OGTT > 90 mg/dL 

HNF1B analysis 

HNF1B-MODY

Renal findings 

Genital abnormalities 

Hypomagnesemia 

Hyperuricemia

Normal or high HDL-C 

Glucosuria when serum glucose <

180 mg/dL  

High LDL, low HDL and TG 

Macrosomia and/or congenital 

hyperinsulinemia 

Start insulin 

Investigate
comorbidities HNF1A analysis 

HNF1A-MODY

HNF4A analysis 

HNF4A-MODY

Start sulfonylurea 

Pharmacological 

treatment is rarely 
required

Diet + exercise 

Follow-up with annual 

HbA1c 

 Figure 1      Diagnostic and treatment algorithm for MODY.    
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differentiate between diseased and non-diseased individ-

uals (i.e., be sensitive and specific). Because individuals 

with  HNF1A -MODY have lower levels of high-sensitivity 

C-reactive protein (hs-CRP) than those with other types 

of diabetes (e.g., T1DM, T2DM,  GCK -MODY), hs-CRP has 

been proposed as a marker in the differential diagnosis 

 (96 – 98) . Furthermore, it has recently been shown among 

adults with diabetes duration longer than 5 years that the 

urine C-peptide/creatinine ratio is higher in patients with 

 HNF1A -MODY or  HNF4A -MODY than in those with T1DM, 

with a sensitivity of 97% and specificity of 95%  (99) . The 

same investigators also found that this marker had a 

sensitivity of 100% and specificity of 97% in diagnosing 

non-T1DM (i.e., MODY or T2DM) among pediatric patients 

with a diabetes duration of 2 years; however, this marker 

was not useful in differentiating MODY from T2DM  (100) . 

Finally, a recent study conducted with adult individuals 

reported that a differential diagnosis between  GCK -MODY 

and T1DM/T2DM might be made using HbA 
1c

  levels  (101) .  

  Treatment 
 The treatment of individuals with  GCK -MODY is not recom-

mended because the hyperglycemia is mild and microvas-

cular complications are not encountered  (2) . In addition, 

no change is observed in HbA 
1c

  values after discontinu-

ing treatment with insulin or oral hypoglycemic agents 

 (30, 102) . The exception is pregnant women, in whom 

insulin may be required to prevent fetal overgrowth. The 

recommendations for insulin therapy in pregnancy differ 

between centers, with some starting treatment immedi-

ately and others only instituting therapy if there is fetal 

overgrowth  (103) . Higher-than-standard doses of insulin 

may be required for pregnant women  (104) . 

 Sulfonylureas have been shown to be effective in treat-

ing individuals with  HNF1A -MODY by acting on ATP-sensi-

tive potassium channels  (13) . It has also been reported that 

gliclazide improved fasting blood glucose levels by 5.2-fold 

compared with metformin and that patients with  HNF1A -

MODY are more sensitive to insulin  (82) . The same study 

determined that the mean duration of diabetes in patients 

with  HNF1A -MODY is 18 years  (82) , and other studies have 

reported that switching from insulin to gliclazide is effec-

tive and safe in individuals receiving long-term insulin 

treatment  (83, 105) . In an observational study in which 

80% of   HNF1A -MODY patients who had received insulin 

for a mean duration of 4 years were switched to gliclazide, 

all of the patients had perfect glycemic control (mean HbA 
1c

  

6.9%) during the 39 months of follow-up  (83) . Moreover, it 

has been shown that the postprandial secretagogue nat-

eglinide is associated with a lower insulin peak and fewer 

hypoglycemic episodes, with more effective postprandial 

blood glucose control, when compared with glibenclamide 

 (106) . Case reports have indicated that meglitinides and 

glucagon-like peptide-1 agonist therapy are also effective 

in treating patients with  HNF1A -MODY  (107, 108) . Patients 

with  HNF1A -MODY experience an approximately 1 – 4% 

decrease in insulin secretion each year, which is induced 

by glucose as the result of progressive  β -cell damage  (105) . 

A low-dose sulfonylurea (e.g., 20 – 40  mg/day gliclazide) 

is the preferred long-term treatment. In general, patients 

with  HNF1A -MODY develop sulfonylurea unresponsive-

ness after 3 – 25  years due to the progressive decrease in 

insulin secretion and become insulin dependent in adult-

hood  (105) . Similar response to sulfonylureas has been 

reported in patients with  HNF4A -MODY  (48) . 

 Patients with  HNF1B -MODY do not generally respond 

to sulfonylureas and typically require insulin early on in 

their disease. Moreover, these patients have been reported 

to develop microvascular complications  (64, 65) . 

 As mutations in other genes are rare, there is insuf-

ficient information about the phenotypical characteristics 

of patients and the clinical progression of diabetes to rec-

ommend specific treatments.   
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