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Abstract

The acid-labile subunit (ALS) of the insulin-like growth factor (IGF) 
binding protein (IGFBP) complex, encoded in humans by IGFALS, has 
a vital role in regulating the endocrine transport and bioavailability 
of IGF-1 and IGF-2. Accordingly, ALS has a considerable influence on 
postnatal growth and metabolism. ALS is a leucine-rich glycoprotein 
that forms high-affinity ternary complexes with IGFBP-3 or IGFBP-5 
when they are occupied by either IGF-1 or IGF-2. These complexes 
constitute a stable reservoir of circulating IGFs, blocking the potentially 
hypoglycaemic activity of unbound IGFs. ALS is primarily synthesized 
by hepatocytes and its expression is lower in non-hepatic tissues. ALS 
synthesis is strongly induced by growth hormone and suppressed 
by IL-1β, thus potentially serving as a marker of growth hormone 
secretion and/or activity and of inflammation. IGFALS mutations in 
humans and Igfals deletion in mice cause modest growth retardation 
and pubertal delay, accompanied by decreased osteogenesis and 
enhanced adipogenesis. In hepatocellular carcinoma, IGFALS is 
described as a tumour suppressor; however, its contribution to 
other cancers is not well delineated. This Review addresses the 
endocrine physiology and pathology of ALS, discusses the latest 
cell and proteomic studies that suggest emerging cellular roles 
for ALS and outlines its involvement in other disease states.
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was restored after administration of exogenous human GH14. This GH 
dependence was also demonstrated for the acid-stable binding protein 
IGFBP-3 (refs. 5,15) and ALS5,16.

This Review will discuss the endocrine physiology and pathology 
of ALS, as well as cell and proteomic studies that suggest emerging cel-
lular roles for ALS. The involvement of ALS in GH disorders and other 
disease states will also be outlined.

Structure of ALS and the ternary complex
The complementary DNA sequence of ALS revealed that it is a member 
of the leucine-rich repeat (LRR) family of proteins. LRR proteins typi-
cally include multiple copies of a 20–30-amino-acid sequence rich in 
leucine residues, with the hallmark repeat sequence LxxLxLxxNxL 
in which x is any amino acid17. ALS contains 20 repeating units, mostly 
of 24 amino acids, including 6 leucines in each repeat (however, LRR19 
and LRR20 each have slightly less than 24 amino acids), and 18 copies 
of the hallmark sequence, with occasional substitutions of leucine by 
other hydrophobic residues11 (Fig. 1). LRR proteins generally adopt a 
solenoid or superhelical configuration, which results in a curved ‘horse-
shoe’ structure17,18. Initially, ALS was modelled to adopt a fully curved, 
toroidal structure with a negatively charged internal surface19. How-
ever, subsequent analysis predicted the more conventional horseshoe 
shape20, confirmed in a seminal cryo-electron microscopy (cryo-EM) 
study as a ‘flat horseshoe’, when ALS was complexed with IGFBP-3 and 
IGF-1 (ref. 21) (Fig. 2). Human ALS is encoded by IGFALS, located on 
chromosome 16p13.3, and a phylogenetic tree including IGFALS ortho-
logues from 71 species has been constructed22. The LRR structure is 
well conserved among vertebrates, with the amino acid sequence of 
zebrafish ALS showing >50% similarity to that of human ALS22.

The human ALS precursor protein consists of 605 amino acids: 
a 27-residue signal peptide followed by the mature sequence of 578 
amino acids, which has a molecular weight of 63.3 kDa (ref. 11). A total 
of 370 different IGFALS coding variants have been reported in an analy-
sis of >60,000 exomes of people with a range of ethnicities, over 90% 
being missense or in-frame deletions or insertions23. Mature human ALS 
has six potential N-linked glycosylation sites, five of which (N37, N69, 
N341, N488 and N553, numbered excluding the signal peptide) have 
bound glycans as determined by cryo-EM21 (Fig. 1). Electrophoretically, 
serum-derived ALS appears as an 84–86 kDa doublet, probably reflect-
ing various glycosylation states, and can be sequentially deglycosylated 
to several smaller forms24.

Early biochemical studies showed that, although IGF-1 or IGF-2 
binding to IGFBP-3 is similar in the presence or absence of ALS, IGFBP-3 
must be in a binary complex before its high-affinity interaction with 
ALS can occur10 (Fig. 2). ALS binds to IGFBP-3–IGF-1 and IGFBP-3–IGF-2 
in 1:1 molar ratio with an affinity of about 109 l/mol (refs. 10,21). Binding 
is decreased by increasing salt concentration, and is maximal at pH 
4.5–5.0, but irreversibly abolished below pH 3.5 (ref. 25). It has been 
reported both in rat serum and Xenopus oocytes that ALS can form 
complexes with unoccupied IGFBP-3 (refs. 26,27). However, these 
are probably low-affinity interactions as cryo-EM analysis indicates 
that both IGF-1 and IGFBP-3 contribute to the surface that interacts 
with ALS, with IGF-1 ‘clamped’ by both the N-terminal and C-terminal 
domains of IGFBP-3, and the binary complex filling most of the concave 
surface of the ALS horseshoe21 (Figs. 1 and 2).

Using mutagenesis, a basic motif in the IGFBP-3 C-terminal domain 
(residues 228–232 of the mature protein) was shown to be required 
for high-affinity ALS binding28. However, structural studies point to 
IGFBP-3 residues on either side of this motif (the C-terminal α3 helical 

Key points

	• The insulin-like growth factor (IGF) acid-labile subunit (ALS), encoded 
by IGFALS, forms a circulating ternary complex with IGF binding 
protein (IGFBP)-3 or IGFBP-5, and IGF-1 or IGF-2.

	• This ternary complex acts as a reservoir of IGF-1 and IGF-2 in the 
bloodstream and has a central role in regulating their endocrine 
transport and tissue bioavailability.

	• Owing to the induction of its expression by growth hormone and 
suppression by IL-1β, ALS might serve as a marker of growth hormone 
secretion and/or activity and of inflammation.

	• Mutation, deletion or inactivation of the gene that encodes ALS in 
humans and mice decreases circulating levels of IGF-1 and IGFBP-3, 
causing moderate growth deficiency and abnormalities in bone and 
carbohydrate metabolism.

	• As a marker of inflammation and sepsis, ALS levels are low in critical 
illness, cardiovascular disease and COVID-19; in some conditions, ALS 
levels might predict disease progression and mortality.

Introduction
Among the multiple binary complexes that can form between the six 
insulin-like growth factor (IGF) binding proteins (IGFBP-1 to IGFBP-6) 
and either IGF-1 or IGF-2, only those containing IGFBP-3 or IGFBP-5 
can combine with a third protein termed the acid-labile subunit (ALS; 
encoded by IGFALS) to form ternary complexes. These ternary com-
plexes, which are regulated by growth hormone (GH), have a central 
role in the endocrine transport and bioavailability of IGF-1 and IGF-2. 
As a result of this functionality, ALS has a major influence on postnatal 
growth and metabolism.

In the 1960s, IGF bioactivity (originally called nonsuppressible 
insulin-like activity or somatomedin) was discovered in fractions cor-
responding to 6–10 kDa in acidified human serum fractionated by size 
exclusion chromatography. By contrast, this bioactivity appeared 
at ~150 kDa in non-acidified serum1. Acidification of human serum 
also revealed a major peak of IGF-binding activity corresponding to 
50–70 kDa (refs. 2,3). Affinity crosslinking experiments suggested that 
the ~150 kDa form of IGF activity could be attributed to an oligomer of 
subunits that were 24–28 kDa (ref. 4). However, the true structure became 
clearer with the demonstration that a protein fraction (peak 3) isolated 
from human serum by anion-exchange chromatography, when combined 
with acid-stable IGF-binding activity and 6–10-kDa IGF activity, could 
reconstitute a complex of about 150 kDa, which was similar to the IGF 
bioactivity found in whole serum5,6. Peak 3 was irreversibly inactivated 
by acidification, leading to its description as the ‘acid-labile subunit’5.

These discoveries led to the isolation and characterization of the 
acid-stable binding protein, IGF binding protein 3 (IGFBP-3; initially 
called BP53)7, followed by cloning of complementary DNA and determi-
nation of the primary structure8. Similarly, the acid-labile component, 
ALS, was purified and characterized9,10, and its primary structure was 
determined by cloning11. These advances enabled the high-molecular-
weight IGF complex to be reconstituted from highly purified IGFBP-3, 
ALS and IGF-1 or IGF-2 (ref. 12). Somatomedin or IGF activity was known 
to be decreased in the serum of people with GH deficiency (GHD)13 and 
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region and the C-terminal loop) that make direct contact with ALS in 
the ternary complex21. IGFBP-5 shows strong sequence homology with 
IGFBP-3 in its C-terminal domain, and IGF–IGFBP-5 binary complexes 
also interact with ALS through C-terminal IGFBP-5 residues29,30, but to 
date there are no structural studies on this interaction. Similar to IGFBP-
3, IGFBP-5 must be occupied by IGF-1 or IGF-2 to interact with ALS, and 
no other IGFBP is capable of binding ALS29. As elucidated by cryo-EM 
modelling, the specificity for IGFBP-3 and IGFBP-5 might be explained 
by structural features of IGF-1–IGFBP-3 and IGF-1–IGFBP-5 binary com-
plexes that facilitate interaction with ALS, as well as steric barriers to 
ALS interaction that are present in binary complexes between IGF-1 
and IGFBP-1, IGFBP-2, IGFBP-4 and IGFBP-6 (ref. 21).

Site, development and age dependence of ALS 
synthesis
Early in situ hybridization studies found rat ALS transcripts predomi-
nantly located in the liver. ALS transcripts were uniformly expressed 
by hepatocytes, but mRNA was also seen in rat kidney, where it was 
localized to the epithelial cells of the cortical proximal tubules31. By 
contrast, using the RNAse protection assay (which is more sensitive than 
in situ hybridization), bovine ALS mRNA was identified in muscle, lung, 
heart, small intestine, adipose and brain, as well as liver (the most abun-
dant site)32. In porcine tissues, muscle, spleen and uterus showed clear 
expression, in addition to liver33. ALS mRNA has also been reported in 
zebrafish liver, heart, kidney and ovary34. Of the human tissues surveyed 
in The Human Protein Atlas, liver is overwhelmingly the predominant 
site of expression, with stomach also a notable site. ALS is identified 
as a matrisome protein (that is, it is associated with the extracellular 
matrix) in human liver35, kidney36 and ovary37. Low-level expression is 
also seen across a range of human brain regions in The Human Protein 
Atlas. Another study detected ALS in the anterior pituitary, but not in 
the posterior pituitary or frontal cortex38.

Similar to IGF-1, ALS is developmentally regulated in mammals. 
Levels of ALS in human umbilical cord serum, measured by immunoas-
say, are around 1 mg/l at 25 weeks gestation, rising to 3–4 mg/l at full 
term39,40 (Fig. 3a). In addition, the ratio of IGFBP-3 found in ~150 kDa 
ternary complexes to that in ~50 kDa binary complexes increases from 
about 0.5:1 to 2:1 over the same period, reflecting an increasing role for 
ALS in IGF transport39. Postnatally, mean serum levels of ALS increase 
steadily from around 5 mg/l at 0–2 months to about 25 mg/l in late 
puberty and early adulthood, then slowly decline in older adults, with 
a mean level in 93 healthy adults, aged 18–65 years, of approximately 
24 mg/l (ref. 16) (Fig. 3a). A similar age dependence has been reported in 
other human studies41,42, with a similar pattern seen in rodent serum43–45. 
Unlike IGFBP-3, for which declining serum levels in ageing adults do 
not reflect its increased cellular production46, serum levels of ALS 
seem to mirror hepatic gene expression. The age-dependent decline 
might indicate ‘unhealthy’ ageing, as healthy centenarians have signifi-
cantly higher plasma levels of ALS than people with reduced functional 
independence47 (Fig. 3b).

In rat liver, ALS mRNA was extremely low at postnatal day 2 in both 
males and females, rising after about week 3 to plateau at weeks 6–10 
(ref. 48); a similar sharp rise between embryonic day 20 and postnatal 
day 80 was seen by in situ hybridization31. Other studies also show 
increasing induction of ALS mRNA as hepatic development progresses, 
although less dramatic, with term fetal rat liver expressing 30% of the 
adult level49; a similar increase was reported in porcine liver33. Quan-
titative human IGFALS expression studies to parallel the pattern of 
regulation of serum levels of ALS through the lifespan have not been 
reported. However, a transcriptome-wide comparison of human liver 
gene expression between people aged <49 years (median: 34 years) 
and >74 years (median: 79 years) identified ALS as one of the most 
prominent age-related transcripts, as it decreased by 50% in the older 
group50 (Fig. 3c).
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GH and other regulatory factors
Serum levels of IGF–IGFBP-3–ALS complexes are GH-dependent in 
humans4,5,16,51 and rodents44,52,53. Levels of the ternary complex are 
decreased in states of GHD or resistance and increased by over secre-
tion of GH (such as in acromegaly) or exogenous GH administration. 
In humans, ALS mRNA levels in the liver, similar to IGF-1 mRNA levels, 
increase in response to 5 days of recombinant human GH adminis-
tration. By contrast, IGFBP-3 mRNA shows no response, despite all 
three proteins being increased in the circulation54. The increase in 
serum levels of IGFBP-3 can be explained by its stabilization in circu-
lating complexes with GH-dependent IGF-1 and ALS. GH also stimu-
lates ALS mRNA expression in porcine and rat liver and hepatocyte 
cultures33,55,56, which is mediated by STAT5a and STAT5b binding to 
the ALS promoter57 (Fig. 4). The involvement of JAK2 in ALS regula-
tion is evidenced by the almost complete loss of Igfals expression in 
mice with hepatocyte-specific Jak2 deletion58. Cell culture studies have 
also revealed regulation of ALS mRNA and/or protein by insulin and 
IGF-1 (ref. 53) (upregulated), dexamethasone and epidermal growth 
factor55, transforming growth factor-β and the somatostatin analogue 
octreotide59, cAMP60,61 and IL-1β62,63 (all downregulated) (Fig. 4).

ALS in endocrine physiology
Although proteomic analysis has identified ALS as an extracellular 
matrix protein64, ALS is currently understood to have a primarily endo-
crine role. ALS is predominantly synthesized in the liver (discussed in 
a previous section); however, catheterization studies in healthy adults 

have been unable to demonstrate hepatosplanchnic release of ALS41,65. 
Although the serum concentration of IGFBP-3 is approximately equimo-
lar to the sum of IGF-1 and IGF-2 concentrations15,66, ALS circulates in at 
least twofold excess16,41. The estimated molar excess depends on assay 
calibration (for example, whether calculated protein masses include 
glycosylation). Its circulating half-life, estimated in critically ill patients, 
is about 30 h (ref. 67). However, a much shorter half-life of 2 h was deter-
mined for human ALS injected into partially GH-deficient rats68. Human 
IGFBP-3, infused with IGF-1 as an intravenous bolus to healthy rats, was 
largely found in the ternary-complexed form within 2 min, reflecting 
the ready availability of excess, unoccupied ALS in the circulation69.

Both IGF-1 and IGF-2 injected (separately) as a bolus in rats cause  
acute hypoglycaemia70. IGF–IGFBP–ALS ternary complexes form a 
reservoir of IGFs in the circulation, limiting IGF access to the tissues 
and thereby blocking their hypoglycaemic action. Thus, IGFBP-3 
co-injected with IGF-1 completely reversed the hypoglycaemic 
effect of IGF-1 alone, whereas a mutated form of IGFBP-3 that inhib-
ited ALS interaction (but had normal IGF binding) was unable to 
prevent hypoglycaemia71. Similarly, in human endothelial cell mon-
olayer cultures, the addition of ALS reduced the transendothelial 
transport of IGF-1 complexed with either IGFBP-3 or IGFBP-5, which 
is consistent with the inability of the ternary complex to cross the 
capillary endothelium and exit the bloodstream72. Nevertheless, ALS 
and ternary complexes are found in body fluids apart from blood, 
for example, in human skin interstitial fluid73, ovarian follicular 
fluid74 and synovial fluid75,76. This finding might reflect local rather 
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than hepatic production, as reported for porcine and ovine ovar-
ian tissue32,77. Although ALS seems to block IGFs in circulation from  
entering tissues, ALS is positively associated with growth rate across 
species. For example, the human cord serum level of ALS is a statis-
tically significant predictor of birth length40, ALS expression is an 
indicator of growth rate in molluscs78 and hepatic Igfals expression is 
correlated with the postnatal growth rate in marsupials79. Interestingly, 
dALS (the Drosophila orthologue of ALS, also known as Convoluted22) 
can also exist in a ternary complex with IGF-like and IGFBP-like pro-
teins and has a negative effect on growth, decreasing body mass when 
overexpressed80. In postnatal humans and mice, almost all studies of 
the relationship between ALS levels and growth relate to states of ALS 
deficiency, as discussed in subsequent sections.

Effects of Igfals deletion in mice
In the first reported mouse model of ALS deficiency, homozy-
gous null mice showed normal prenatal survival and birthweight, 
and only a 13% weight reduction at 10 weeks, despite almost 90% 
loss of circulating levels of IGFBP-3 and no apparent compensa-
tory increase in the serum levels of other IGFBPs81. Serum levels 

of IGF-1 were reduced to about 40% of wild-type levels (Table 1). 
As expression of the genes encoding IGFBP-3 and IGF-1 was not  
affected by Igfals deletion, their reduction in the circulation was attrib-
uted to increased clearance in the absence of the ternary complex. 
The modest growth reduction in the absence of ALS was unexpected 
in view of the reported association between ALS and growth rate and 
was taken as evidence of the importance of local rather than endocrine 
IGF-1 in determining growth in mice81. Crossing Igfals-null (ALSKO) 
mice with LID mice (null for hepatic Igf1 expression) caused a further 
loss of circulating levels of IGF-1 to 15% of wild-type levels, which was 
accompanied by a marked elevation in levels of GH (not seen with Igfals 
deletion alone) and very little residual IGFBP-3 (ref. 82). IGF-1 clear-
ance was calculated to be about four times faster in the ALSKO–LID 
mice than in control mice. However, paradoxically, serum levels of 
free IGF-1 were estimated to be four times higher in the ALSKO–LID 
mice than in control mice.

Measured at 8 weeks after birth, body weight was similar in ALSKO 
and ALSKO–LID mice, but body length, femur length and markers of 
bone development were notably lower in ALSKO–LID than in wild-type 
or ALSKO mice. Some of these parameters could be partially restored 
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by 4 weeks of IGF-1 administration, providing new support for the 
importance of endocrine IGF-1 in bone development82. Parathyroid 
hormone administration revealed differences between bone com-
partments among control, LID, ALSKO and ALSKO–LID strains. For 
example, cortical bone area was increased by parathyroid hormone in 
control and Igfals-null mice but not in the LID or ALSKO–LID strains, 
whereas parathyroid hormone had no effect on the trabecular bone 
volume to total volume fraction in either Igfals-null strain. This finding 
suggested that the circulating form of IGF-1 (determined by ALS) rather 
than just its concentration was important in bone growth and the bone 
response to parathyroid hormone83. In addition to its endocrine role 
in regulating bone metabolism, ALS might have a direct action at the 
level of osteogenesis by regulating the differentiation of bone-marrow-
derived mesenchymal stem cells. Mesenchymal stem cells from ALSKO 
mice showed increased adipogenic differentiation compared with 
mesenchymal stem cells from control mice, accompanied by increased 
PPARγ expression; furthermore, exogenous recombinant ALS sup-
pressed adipogenesis. Conversely, osteogenic differentiation was mark-
edly decreased in ALSKO-derived mesenchymal stem cells (Table 1),  
which suggests a direct role for ALS in controlling mesenchymal  
stem cell fate84.

A comparison of ageing ALSKO and wild-type mice between 1 and 
2 years old showed significantly lower body weight in the absence of 
Igfals, with lower adipose tissue mass and higher lean mass85 (Fig. 3d). 
In the femurs of 2-year-old ALSKO mice, the marked intracortical 
porosity that is characteristic of 2-year-old wild-type mice was absent, 
corresponding to fewer osteoclasts in the absence of Igfals, with bone 
stiffness and strength significantly increased85. It is possible that 
these differences are attributable to the lifelong reduced IGF-1 levels 
in the circulation, although hepatic Igf1 expression is unaffected 
by Igfals deletion81. An increased incidence of hepatic and gastric 
tumours was also observed in 2-year-old ALSKO mice compared with 
control mice, perhaps related to increased GH secretion85. However, 
it is notable that Igfals has been identified as a longevity-associated 
gene in GH-deficient dwarf mutant mouse strains (such as Ames 
and Snell) and shows a significant negative correlation with mean 
lifespan across 21 dwarf strains; this association is not seen for Igf1 
(ref. 86) (Fig. 3e). Whether this finding represents an independent 
effect of Igfals or simply reflects the central role of ALS in IGF trans-
port remains to be established. Contrasting with these findings, 
in a mouse model of premature ageing resulting from deletion of 
Zmpste24 (encoding a metalloproteinase), Igfals expression was 
strongly downregulated87.

In other ALS-null animal models, zebrafish lacking Igfals during 
development showed increased dorsalization (for example, truncation 
of the tail and other morphological changes) that could be rescued 
by human ALS mRNA, which indicates a role for ALS in dorsoventral 
patterning34. In Drosophila, dALS silencing had no effect on larval devel-
opment but reduced adult male size80. Furthermore, in two Drosophila 
models of Alzheimer neurodegeneration, dALS knockdown exacer-
bated the degree of neuronal dysfunction88 (Table 1). These findings 
are suggestive of cellular ALS actions beyond the regulation of IGF 
transport. Such actions could be at the level of the extracellular matrix 
as human ALS has been identified as a matrisomal protein64 and dALS 
is involved in matrix organization22.

IGFALS mutation in humans
Apart from defects in GH synthesis or signalling, IGFALS mutations 
have emerged as a notable cause of IGF-1 deficiency. The first report 

described a frameshift mutation encoding a severely truncated protein, 
which was undetectable in the serum of the protein either immuno-
logically or by the presence of an IGF ternary complex. As seen in 
Igfals-null mice, despite extremely low circulating levels of IGF-1 and 
IGFBP-3, growth impairment was not severe (about –2 SD); however, 
some pubertal delay was present89 (Table 1). This report was followed 
by the description of a patient with similar growth characteristics and 
similarly low levels of IGF-1 and IGFBP-3, which was attributed to a mis-
sense mutation resulting in undetectable serum levels of ALS90. In vitro, 
this mutation (Asp440Asn, numbered including the signal peptide) 
was shown to generate a new glycosylation site on ALS, with impaired 
secretion and deficient ternary complex formation91. Engineering a 
second mutation to block glycosylation at Asn440 only slightly allevi-
ated the secretion defect but fully restored the ability to form a ternary 
complex with IGF-1 and IGFBP-3 in vitro. This finding provided the 
first mechanistic demonstration of how a natural ALS mutation could 
disrupt IGF transport.

Since these two reports were published, there have been 
many descriptions of IGFALS mutations, as extensively discussed 
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Fig. 4 | Regulation of acid-labile subunit synthesis. Growth hormone (GH) 
signals through the GH receptor (GHR), mediated by JAK2 and STAT5 activation, 
to stimulate transcription of IGFALS, the gene encoding acid-labile subunit 
(ALS)57,58. The inflammatory cytokine IL-1β143 induces expression of SOCS3, which 
inhibits JAK2 signalling163, thereby blocking IGFALS transcription. Similarly, 
cAMP, which leads to induction of SOCS3 expression through the exchange 
protein activated by cAMP 1 (EPAC1)164, inhibits IGFALS expression and protein 
levels of ALS61. Inhibition of STAT5-mediated transcription by transforming 
growth factor-β (TGFβ)165 and glucocorticoids166 might account for their 
inhibitory effects on ALS synthesis in hepatocytes55,59. The microRNA miR-210-5p 
might contribute to the suppression of ALS in hepatocellular carcinoma120 by 
targeting STAT5 (ref. 167).
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elsewhere92–100. Up to 2023, the Human Gene Mutation Database reported 
35 mutations, of which the majority are missense or nonsense (Fig. 1). 
The elucidation of the IGF–IGFBP-3–ALS ternary complex structure has 
provided structural explanations for the probable deleterious effects of 
many of these mutations on ALS function21. In general, the typical growth 
phenotype of affected individuals is quite similar and shows a gene dos-
age effect: about –2 SD in height for mutation in both alleles (range: –0.5 
to –4.2) and about –1 SD for a heterozygous mutation (range: +1.6 to 
–3.3)93. This gene dosage effect is also evident in the extent of reduction 
in serum levels of IGF-1, IGFBP-3 and ALS in those with homozygous muta-
tions compared with those with heterozygous mutations101. Treatment 
of patients with a biallelic IGFALS mutation with recombinant human GH 
has shown disappointing results with, at best, small effects on growth100. 
A satisfactory growth response to human GH administration has been 
reported in a patient with short stature who had a heterozygous IGFALS 
mutation; as such, further investigation of the efficacy of this treatment 
in people with heterozygous IGFALS mutations is warranted102.

In addition to growth impairment, IGFALS mutations are some-
times associated with low head circumference94,97, low bone mineral 
density92,94, insulin insensitivity and delayed puberty92,95 (Table 1). 
A statistically significant gene dosage effect has been reported for 
some bone parameters, but not for parameters of carbohydrate or lipid 
metabolism101. The mild insulin resistance in the absence of ALS con-
trasts with the finding in ALSKO mice, which have no hyperinsulinaemia 
and have faster glucose clearance than control mice103. In addition to 
low circulating levels of IGFBP-3 in humans with ALS deficiency, IGFBP-1 
and IGFBP-2 are typically also low92; however, the reason is unclear as 
neither is known to interact with ALS.

ALS in human disease
GH disorders
As circulating levels of ALS are low in GHD and increased in condi-
tions of GH excess, ALS has been evaluated extensively in disorders 
that affect GH. When used to monitor the effectiveness of increasing 
human GH dose levels to normalize serum markers in adults with GHD, 
ALS measurement performed similarly to IGFBP-3 measurement, but 
not as sensitively as IGF-1 measurement104. Although IGF-1 and ALS 
levels remained associated over 12 months of treatment (while the 
relationship between IGF-1 and IGFBP-3 levels was lost)105, it has been 
concluded that neither IGFBP-3 nor ALS measurement offers any benefit 
over monitoring IGF-1 alone106. ALS is also not regarded as particularly 
effective in diagnosing adult GHD, as there is considerable overlap 
between healthy and GHD values107,108. ALS measurement can be used 
to monitor GH replacement in children with GHD76, but is regarded as 
less useful than IGF-1 or IGFBP-3 in diagnosing paediatric GHD109,110.  
An expert opinion, published in 2023, on the diagnosis of GHD in adults 
or children does not include measurement of ALS111.

In diagnosing patients with GH excess owing to acromegaly, 
ALS measurement, with an area under the receiver operating char-
acteristic curve of 0.937, was less sensitive than measuring IGF-
1, although better than measuring IGFBP-3 (the normal range for 
IGFBP-3 overlaps with that seen in acromegaly)112. After surgery, all 
patients whose surgery was considered successful showed ALS values 
in the normal range112, suggesting its value as a marker of disease 
activity113. However, another study found that testing for ALS offered 
no benefit over measuring IGF-1 (ref. 108). ALS measurement is not 
included in current consensus recommendations for the manage-
ment of patients with acromegaly114. ALS has also been evaluated 
for its ability to detect exogenous GH administration in athletes. 
Although levels of ALS increase in response to GH in a similar way 
to IGF-1 levels115, approved GH doping protocols do not currently 
include ALS measurement116.

Cancer
Hepatocellular carcinoma. IGFALS has been proposed as a potential 
tumour suppressor gene in patients with hepatocellular carcinoma on 
the basis of its CpG hypermethylation, which has been associated with 
a loss of genomic information117,118. IGFALS seems to be progressively 
downregulated as hepatocellular carcinoma develops from healthy 
liver, progressing through low-grade and high-grade dysplastic nodules 
to early and then advanced hepatocellular carcinoma119. In hepatocel-
lular carcinoma positive for hepatitis B virus, low ALS levels have been 
attributed to its potential suppression by the microRNA miR-210-5p, 
which is upregulated in these carcinomas120 (Fig. 4). Several studies 
report that IGFALS has prognostic potential in hepatocellular carci-
noma, with low levels of IGFALS expression predicting poor patient 
survival121,122. Conversely, high expression of IGFALS is reported to be 
a marker for small tumour size, low tumour, node and metastasis stag-
ing and extended overall or progression-free survival35. In alcoholic 
liver disease, a common precursor of hepatocellular carcinoma, ALS 
is strongly downregulated and is a powerful predictor of severe versus 
non-severe disease, with a specificity of 1.00 and a sensitivity of 0.92 
(ref. 123).

Prostate and breast cancer. The relative risk of advanced prostate 
cancer could be higher for men in the middle or high tertiles for plasma 
levels of ALS than for men with the lowest ALS levels. However, this risk 
is modified by IGF-1 levels; for example, men with IGF-1 levels in the  

Table 1 | Acid-labile subunit deletion phenotypes

Species Phenotype Refs.

Drosophila No effect on larval development; reduced adult 
male size

80

Exacerbated neuronal dysfunction in Alzheimer 
disease models

88

Zebrafish Increased dorsalization (for example, shortened 
trunk and loss of tail)

34

Mouse Mild effect on postnatal growth; decreased serum 
levels of IGF-1 and IGFBP-3a

81

Increased IGF-1 clearance; decreased femoral 
length, density, cross-sectional area, cortical 
thickness and so on

82

Increased vertebral trabecular number and bone 
volume fraction

83

Decreased osteogenesis, increased adipogenesis 
by mesenchymal stromal cells

84

During ageing, lower adipose tissue mass and 
higher lean mass than control mice

85

No insulin resistance; improved glucose clearance 
compared with control mice

103

Humanb Growth retardation, delayed puberty, insulin 
resistance, low levels of IGF-1 and IGFBP-3

89,95

Low head circumference, low bone mineral density 94,95

IGF, insulin-like growth factor; IGFBP, insulin-like growth factor binding protein. aThe Igfals 
inactivation model described in this study is the basis of all Igfals-null mouse models 
described in this table. bThese studies refer to various IGFALS mutations but all result in a loss 
of acid-labile subunit protein.

http://www.nature.com/nrendo


Nature Reviews Endocrinology | Volume 20 | July 2024 | 414–425 421

Review article

highest tertile and low ALS levels have a higher relative risk of 
advanced prostate cancer (relative risk of 9.3) than those with 
the highest ALS and IGF-1 levels (relative risk of 5.0)124. By con-
trast, another study found no statistically significant association 
between ALS levels and lethal prostate cancer risk125. An IGFALS 
polymorphism (rs17559) showed a significant association with 
survival related to prostate cancer, with hazard ratios reported 
as 0.72 for people heterozygous for the polymorphism and  
0.41 for those with minor homozygous polymorphisms126; however, 
a subsequent study did not find any ALS polymorphisms that were 
associated with mortality related to prostate cancer127.

In The Cancer Genome Atlas breast cancer data, IGFALS expression 
is statistically significantly elevated in breast cancer tissue compared 
with normal breast tissue, in parallel with hypomethylation in the 
IGFALS promoter region128. However, high IGFALS expression predicts 
improved overall survival in patients with invasive breast cancer129. 
In addition, IGFALS has been included in predictive gene panels that 
have high accuracy in determining patient prognosis129,130. No IGFALS 
polymorphisms have been shown to associate with breast cancer risk, 
patient survival or mammographic density131–133.

Non-islet cell tumour hypoglycaemia. Hypoglycaemia associated 
with extrapancreatic tumours, or non-islet cell tumour hypoglycae-
mia, was recognized as a disorder involving IGFs five decades ago. 
Non-islet cell tumour hypoglycaemia is attributed to the tumour pro-
ducing incompletely processed IGF-2 precursors, sometimes termed 
‘big’ IGF-2 (refs. 134–136). Serum levels of ALS are less than half of 
normal in patients with non-islet cell tumour hypoglycaemia, and 
IGFBP-3 circulates largely in binary, rather than the usual ternary, 
complexes in these patients137. In vitro, the addition of ALS to serum 
from patients with non-islet cell tumour hypoglycaemia largely restores 
the ternary complexes138. Moreover, treatment of patients with GH to 
restore ALS levels (as first proposed by Teale et al.139) alleviates the  
hypoglycaemia140,141, which suggests that there is a functional deficiency 
of ALS in these patients. Although patient-derived big IGF-2 forms 
normal binary complexes with IGFBP-3 and IGFBP-5, the binary com-
plexes that include IGFBP-3 bind ALS extremely poorly, whereas those 
that include IGFBP-5 seem to bind normally142. Poor ternary complex 
formation by IGFBP-3 in non-islet cell tumour hypoglycaemia might 
increase the bioavailability of IGF-2, contributing to hypoglycaemia 
in this condition.

Inflammation, sepsis and COVID
In rat hepatocyte cultures stimulated with GH, the pro-inflammatory 
cytokine IL-1β markedly suppresses synthesis and secretion of ALS, 
mediated by the induction of suppressor of cytokine signalling 3 
(SOCS3)62,63,143 (Fig. 4). In vivo, rats treated with endotoxin initially show 
suppressed ALS levels, after a spike in SOCS3 and suppression of GH 
receptor mRNA at 12 h, eventually followed by a rebound in ALS above 
initial levels63,144. Similarly, patients admitted to an intensive care unit 
show an initial drop in serum levels of ALS, which only recover above 
baseline in the subset of patients in whom IGF-1 levels also rebound145. 
During protracted critical illness, ALS levels fall lower in men than in 
women, an effect attributed to lower GH pulsatility in men than in women 
for the same total GH production146. ALS levels are strongly associated 
with the pulsatile, but not the non-pulsatile, GH fraction146.

ALS has been evaluated preclinically as a biomarker for inflamma-
tory cytokine expression147. In addition, in patients with sepsis, ALS is 
statistically significantly associated with mortality attributed to septic 

shock and is included in a highly specific proteomic panel associated 
with mortality148. Similarly, serum levels of ALS decline in patients with 
severe rheumatic heart disease, and the inclusion of ALS in a 6-protein 
panel allows the correct classification of more than 90% of patients149.

In cell culture studies, viral infection increases ALS levels in cell 
lysates, which is proposed to contribute to the antiviral immune 
response150. However, in patients with COVID-19, serum levels of ALS 
decline as infection progresses from non-severe to severe and decline 
across uninfected individuals, those who survive COVID-19 and those 
who do not survive; therefore, ALS might be predictive of disease 
progression and patient survival151,152. ALS might act as a prognostic 
marker in COVID-19 (low levels are associated with poor prognosis), 
reflecting levels of inflammatory cytokines153, and it is included in a pro-
teomic panel predicting mortality in patients with COVID-19154 (Box 1).  
An apparently contrasting study found that ALS levels were statistically 
significantly increased in patients with COVID-19 who progressed to 
critical illness, compared with the non-critical group155.

Cardiovascular and metabolic disorders
Serum levels of ALS were initially reported to be elevated in men with 
coronary heart disease (but not diabetes mellitus), along with IGFBP-3 
and IGFBP-5 (ref. 156). However, a subsequent plasma proteome study 
from the Women’s Health Initiative showed decreased levels of ALS in 
those with coronary heart disease compared with control individuals157. 
Hypertrophic cardiomyopathy sometimes progresses to heart failure, 
and ALS was found to be statistically significantly decreased in patients 
with acute heart failure with preserved ejection fraction compared with 
those who had hypertrophic cardiomyopathy158. Interestingly, in a plasma 
proteomic analysis, a hazard ratio of 0.65 was seen for the association 
between ALS and heart failure after myocardial infarction159 (that is, 
ALS levels are inversely associated with the risk of heart failure). As 
there are no mechanistic studies relating ALS to cardiovascular dis-
ease, it is unclear whether the link is through altered IGF dynamics 
or an unrelated cellular mechanism. Patients with non-valvular atrial  

Box 1

Proteomic studies of serum 
acid-labile subunit abundance 
in patients with COVID-19

	• The acid labile subunit (ALS) is downregulated in severe disease; 
ALS levels are potentially prognostic for disease progression151.

	• Levels of ALS are higher in those who survive a COVID-19 
infection than in those who do not; ALS is part of a protein panel 
for mortality risk assessment152,154.

	• Low levels of ALS are associated with severe COVID-19. ALS 
is prognostic for severe COVID-19; this association has been 
confirmed by enzyme-linked immunosorbent assay153.

	• ALS concentrations are higher in patients who have pneumonia 
associated with COVID-19 and are critically ill than in those who 
are not critically ill155.

	• ALS concentrations are higher in control individuals who test 
negative for COVID-19 than in patients who test positive168.
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fibrillation have about 20-fold lower ALS mRNA expression in platelets 
than control individuals, rebounding over 250-fold after treatment 
(pulmonary vein isolation)160. In this instance, it was proposed that 
platelet-derived ALS acts by modulating the IGF environment, possibly 
locally, as IGF-1 is known to stimulate platelet aggregation; however, this 
hypothesis has not been tested experimentally.

The association between ALS deficiency and insulin insensitivity 
in humans has already been mentioned in the section ‘IGFALS muta-
tion in humans’92. In brief, although fasting blood levels of glucose are 
sometimes normal in people with ALS deficiency, hyperinsulinaemia 
and glucose intolerance are often observed. These findings contrast with 
those in ALSKO mice, which show improved glucose tolerance compared 
with control mice103. In patients with insulin-dependent diabetes mel-
litus, serum levels of ALS are decreased, and they are restored by insulin 
therapy161; similar findings are seen in rats with streptozotocin-induced 
diabetes mellitus48. In a study of patients with type 2 diabetes mellitus, 
serum levels of ALS were negatively associated with levels of LDL choles-
terol and insulin sensitivity and were positively associated with fasting 
levels of insulin. In this study, treatment with rosiglitazone for 24 weeks 
caused a marked reduction in ALS in patients without obesity, but not 
in those who had obesity. Changes in ALS levels on treatment were 
reported to predict changes in total cholesterol levels162. The inverse 
association between ALS levels and insulin sensitivity in type 2 diabetes 
mellitus seems contrary to the apparent insulin resistance seen in people 
with mutations in IGFALS who have no circulating ALS, which suggests 
that a lifelong disruption of the IGF axis in ALS deficiency might cause 
additional metabolic impairment.

Conclusions
For about two decades after its existence was first proposed in 1980 
(ref. 5), ALS research was largely confined to biochemical investiga-
tions of its ternary complexes, cell biology and preclinical studies of its 
regulation, as well as immunoassays of serum levels in various clinical 
conditions. Although these studies established a firm foundation for 
understanding the endocrine biology of ALS, they did not uncover 
the deeper insights that have begun to emerge in the past few years. 
For example, the structural determination by cryo-EM21 has provided 
critical new information on ALS and the ternary complex structure and 
could provide a more nuanced understanding of IGF, IGFBP-3 and ALS 
physiology and pathology than was previously possible. In vivo stud-
ies involving deletion or inactivation of the gene that encodes ALS, 
whether by natural mutation in humans or experimentally in mice, 
zebrafish or Drosophila, have revealed a wealth of new knowledge on 
the wide-ranging actions of ALS not only in somatic growth but also 
in development, bone and carbohydrate metabolism and some can-
cers. Finally, a plethora of proteomic studies have, often inadvertently, 
uncovered an unexpected involvement of ALS in diverse conditions, 
including COVID-19 and cardiovascular disease.

Despite these advances, many important research questions 
remain. For example, to date, there is no detailed structural information 
about ALS complexes with IGFBP-5, or about complexes with proteo-
lysed IGFBP-3 (as is seen in the serum of pregnant people). At the cell 
biology level, possible roles of ALS as a matrisomal protein are almost 
entirely unknown. Finally, both preclinically and clinically, emerging 
relationships between ALS and both longevity and cancer require fur-
ther exploration, and differences between mouse and human studies 
on the effects of ALS deletion in metabolic disease need to be better 
understood. The exciting discoveries described in this Review sug-
gest that the focus to date on ALS as a key player in the endocrinology 

of growth might have underestimated the diversity of its actions and 
indicate that we are on the threshold of a much broader understanding 
of its importance in human and animal biology and pathology.

Published online: 21 March 2024
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